arXiv:2112.07010v1 [cs.OS] 13 Dec 2021

Slowing Down for Performance and Energy: An
OS-Centric Study in Network Driven Workloads

Han Dong, Sanjay Arora®, Yara Awad, Tommy Unger, Orran Krieger, Jonathan Appavoo
Red Hat", Boston University

Abstract

This paper studies three fundamental aspects of an OS that
impact the performance and energy efficiency of network
processing: 1) batching, 2) processor energy settings, and
3) the logic and instructions of the OS networking paths. A
network device’s interrupt delay feature is used to induce
batching and processor frequency is manipulated to control
the speed of instruction execution. A baremetal library OS
is used to explore OS path specialization. This study shows
how careful use of batching and interrupt delay results in
2X energy and performance improvements across different
workloads. Surprisingly, we find polling can be made energy
efficient and can result in gains up to 11X over baseline Linux.
We developed a methodology and a set of tools to collect
system data in order to understand how energy is impacted
at a fine-grained granularity. This paper identifies a number
of other novel findings that have implications in OS design
for networked applications and suggests a path forward to
consider energy as a focal point of systems research.

1 Introduction

There has been a large body of work in systems research
focused using OS path specialization techniques to accel-
erate network applications [3, 11, 41, 45, 58, 61, 62, 68-70,
74, 76, 78, 79]. While performance is the main motivator be-
hind these systems, we find their impact on energy is not as
clearly understood. Our work seeks to start filling this gap by
offering a detailed OS-centric study of performance-energy
in network applications under different OS structures.
There are three fundamental aspects of an OS that impact
the performance and energy efficiency of network process-
ing: 1) batching, 2) processor energy settings, and 3) the
logic and instructions of the OS networking paths. Delaying
packet processing improves overall software stack efficiency
as system overheads such as interrupt processing, OS book-
keeping, and cache misses are amortized or eliminated by the
batched handling of packets. However, the benefits of batch-
ing are typically weighed against its impact on workload
latency [21]. Similarly, processor energy settings impacts the
efficiency of network processing by trading off instruction
execution speed with a reduction in energy use. In addition,
batching and processor energy settings interacts with the
software stack, its policies, and workload performance re-
quirements to impact the energy saved by processor sleep
states during idle periods between packet arrivals. Lastly,

specializing OS paths offers the chance to handle packets
with optimized OS logic and data structures, thus improving
overall network processing efficiency. In this paper, our goal
is to study how all three of these aspects interact together
to impact network processing performance and energy use.

A network interface controller’s (NIC) interrupt delay fea-
ture [37] is used to induce batching. A processor’s Dynamic
Voltage Frequency Scaling (DVFES) [20] feature is used to con-
trol its frequency and energy setting to explores trade-offs in
execution speed and energy use. An open sourced library OS
(EbbRT [82]), ported to run baremetal, is used as a platform
to contrast against a general purpose Linux to study how
different OS structures are impacted by the two mechanisms
listed.

While our data-driven study reveals a wealth of results
in §5 with different impacts on system design, below, we
summarize three of the main example findings and suggest
implications for how OSes can improve energy efficiency
while supporting high performance network applications:

1. Finding: By manually setting both DVFS and NIC
interrupt delay values in an exhaustive search, we
were able to find optimal performance and energy ef-
ficiency points in both OSes, e.g. rather than setting
DVFS and interrupt delay values using its default poli-
cies, Linux configured with manually searched values
can improve tail latency by 2X or energy savings by
55% in a network driven TPC-C style transactional
database workload (fig. 8). Implication: Careful co-
ordination among different hardware features should
be used towards common objectives to explore new
trade-offs that achieve even further efficiencies over
today’s isolated policies.

2. Finding: Polling not only improves latency, but can
be made energy efficient (for small payloads) under
specialized OS paths using slowed DVEFS. For exam-
ple, in §5.2.1, we show 27% improved tail latency for
a key value store with 35% less energy than when
interrupts are used and 11X improvement in energy
efficiency for a closed loop benchmark in §5.1.3). For
other workloads that involve larger payloads or more
application work, polling can result in negligible per-
formance improvement while consuming dramatically
more energy. For example in fig. 8, a baremetal li-
brary OS using poll achieved best case tail latency
but used over 60% more energy than Linux. Implica-
tion: Specialized systems that use polling to achieving

low-latency [2, 11, 13, 41, 62, 68, 70, 74, 76, 82] can be
made energy-efficient with careful use of DVFS, fur-
ther, these results suggests the importance for energy
aware OS-level optimizations that can switch between
poll and interrupt-driven IO in response to changes in
demand and workload behavior.

3. Finding: Exploiting OS path specialization via a baremetal

library OS yields improvements in not only perfor-
mance but also energy over Linux (88% energy effi-
ciency improvement for Node]S webserver in fig. 3,
2X throughput for memcached in fig. 7, and TPC-C in
fig. 8). Surprisingly, even in application-heavy work-
loads, OS path specialization can still result in signifi-
cant energy savings (up to 85% in fig. 8). Implication:
There is enormous value to adopting specialized OS
or path specialization (even in general purpose OSes)
beyond virtual environments for both performance
and energy efficiency.

In order to arrive at these findings, we conducted an exten-
sive experimental study over the two OSes with thousands of
experimental combinations resulting in a dataset over 5 TB.
Given this large dataset, we developed a methodology and
visualization tool to help us identify the performance-energy
trade-offs in a fine-grained manner and to understand the
causal relations between the hardware mechanisms and its
impact on different OS structures. We believe the methodol-
ogy, dataset, and tools are all contributions to OS research
in systems and will help other researchers to develop new
insights of the impact of OS changes on energy use. We plan
to open source both the dataset and the tools.

In order to better reason about data we’ve collected, we
begin by constructing a simple generic timeline of how pack-
ets are processed in a typical system in §2, we then discuss
performance and energy in §3 in the context of how we break
this timeline down. Next, we discuss our experimental and
software setup in §4 and then present our experimental data
in §5. Related work is discussed in §6 and we conclude in §7.

2 Processing Break Down

From an OS perspective we break down network driven
processing into stages that allows us to organize and reflect
the OS and application interaction with the workload request
timeline. This break down is illustrated in figure 1 and shows
a generic set of stages that all requests must go through. !

2.1 Quiescent

Given the packet and transactional nature of network driven
services, a quiescent period, in which no requests are present
at the server, precedes activity on the server. The nature of
the workloads drive the length of quiescent period and the

1 Although this is drawn and discussed from the perspective of a single
core, our analysis and evaluation assumes that multiple cores could be
concurrently used to shorten servicing times.

Network Network
Request Reply
Recieved Initiated

Quiescent

Request
Detection

os oS
Request “" Reply
f {
Request
Servicing

Figure 1. Application processing request timeline. Quies-
cent are periods between packet arrivals. Request Servicing
includes all software components.

nature of the work itself required to service the request.
Network services tends to fall into two broad categories,
Open and Closed loop [83].

2.1.1 Open Loop: In an open loop scenario like a Mem-
cached workload, the external request rate induces an inter-
arrival gap that will drive the quiescent period — longer at
lighter loads (lower queries-per-second (QPS)) and shorter
at heavier loads (higher QPS). The arrival rate can largely
be considered independent of the time required to service a
request. Providers often set a Service-level Agreement (SLA)
target, such as some percentage of requests to be completed
under a stringent time budget, and there has been a wealth
of research in using these SLA headrooms to lower data-
center energy use mainly by decreasing processor frequen-
cies [9, 22, 30, 31, 59, 60, 92].

2.1.2 Closed Loop: Examples of closed loop workloads
are snapshotting a database to a remote server, video stream-
ing or a middle tier service within a data center [7-9, 22,
59, 64]. The work to be done is a sequence of requests that
have an inter-dependency on each other. Specifically, the
arrival of the next request depends on how fast it takes to
service the current request. From a server’s perspective, the
quiescent period will be bounded by time to transmit both
the request and the reply, as well as the time on the client to
generate the next request. In the closed loop scenario, one
would like the server to complete every request quickly so
that the overall time to complete a task is minimized and
ideally use less energy in the process.

2.2 OS Request Detection

Fundamental to any operating system is how it detects and
schedules processing in response to IO device activity. At
the two extremes are interrupt and poll driven detection.

2.2.1 Interrupt driven IO. Using interrupts has three im-
portant implications: 1) it can be used to wake a processor
from a halted state, which the OS entered to sleep the pro-
cessor previously, in response to external activity, 2) allow
an OS to arbitrate processing across competitive devices in a
multi-programmed/multi-device setting, 3) interrupts have

inherent performance costs associated with them - latency
in starting to handle a request, either because of the costs
associated with preempting work [2] or Intel c-state exit
penalties[77]. This can also have a negative impact on the in-
struction efficiency, such as Instructions Per Cycle (IPC), due
to induced micro-architecture hazards such as the inability
to pre-fetch or speculatively execute across an interrupt.

2.2.2 Hybrid driven IO. A general purpose OS typically
exploits some form of hybrid IO strategy alternating between
interrupts and polling when servicing high speed NICs. A
common strategy is to use interrupts when the load is low
and switch to polling when load is high and back to inter-
rupts when load reduces. A general purpose OS, even under
sustained high load, bounds the poll phase to avoid starving
other devices and software. Linux’s New API (NAPI)[86]
framework implements this hybrid scheme.

2.2.3 Poll driven IO. In contrast, specializing an OS to
support the execution of a single application can explore
more extreme strategies like aggressive polling. Most modern
NICs devices expose a cache-friendly interface that permits
the processors to read a per-core memory address to deter-
mine if the device has received data that requires processing
by the core. This allows software to directly poll the device
and initiate software handling without an interrupt. This
approach reduces latency and other performance penalties
associated with interrupt driven IO but requires a busy CPU.
As a result, there have been a large body of work to address
latency sensitive applications through the judicious use of
polling [2, 11, 13, 41, 62, 68, 70, 74, 76, 82]. In the extreme,
a customized OS path supporting a single application can
run a poll loop on every core to constantly check for work,
conduct the work and then go back to polling for new work
and thus never halting the processors.?

2.3 OS Request Processing

Once the OS detection mechanism identifies the NIC has
data to process, several components of OS functionality must
be run in accordance with the execution model of the OS.
Normally, a network stack parses the packet header and
eventually passes the payload to application for processing.

This work on a general purpose OS is typically split be-
tween two levels of scheduling; 1) interrupt level in which
minimal work is done but at highest critical priority and is
run-to-completion (typically called the top-half processing),
2) the so-called bottom-half uses kernel facilities to execute
both device driver logic and protocol processing in a man-
ner that can be preempted and rate limited. Regardless, all
this work is done at the OS privilege level and ultimately

21t is worth noting processors also have the ability to halt in a way that
an update to a cache line will awaken it, there exists the possibility of
implementing the poll in combination with sleep states. We do not explore
this possibility, leaving it for future work.

prepares data for application processing (pre-emptable), and
is independently scheduled at lower privilege and priority.

An application specific library OS stack sheds much of the
above complexity, both shortening the path and eliminating
the above privilege scheduling domains [11, 70, 82]. It ex-
ploits short-cuts that allow run-to-completion execution of
all the logic, including application processing in response to
detecting device activity.

2.3.1 Application Processing. As illustrated in figure 1,
during application processing, OS logic may be interleaved.
This work roughly falls into two categories, synchronous
work done in service of this application request (page-faults,
system calls, etc) and asynchronous work not having to
do with this request (OS background work, processing of
other requests or processes). Library OS’s can often avoid
interleaving asynchronous work, unrelated to the request
handling, and thus minimize jitter and improve IPC.

2.3.2 OS Reply Processing. At some point during appli-
cation processing, a reply is generated and submitted to the
OS for transmission. This can be handled in an asynchronous
fashion depending on the OS semantics; the OS can initiate
protocol processing and device transmission in parallel with
the remaining application logic (eg. book keeping, cleanup
and preparation for the next request). This overlap reveals
a potential opportunity for performance-energy trade-off.
Specifically, it is possible given a particular packet arrival
rate that slowing down causes the remaining application
work to coincide with the time for the next request to arrive
in both a closed and open loop setting, therefore keeping the
processor busy. As such it may be possible that trade-offs in
sleep state latency, interrupt overheads and polling leads to
better performance at lower energy consumption.

2.3.3 Idle Policy. If all processing is complete, no traffic
is pending and aggressive polling is not in use, the OS can
use a policy that selects a hardware sleep state, such as Intel
C-states [34], to halt the core. Various policies around op-
timizing them have been studied as well [16, 52, 65]. Each
sleep state has an associated reduction in static power con-
sumption. In the extreme, the deepest sleep states can flush
micro-architectural state such as caches and power down
these structures. However, each sleep state also imposes a
progressively larger wake-up latency and potential impact on
execution efficiency given the possible flushing of state [93].

There is clearly a relationship between the Idle Policy
and Request Detection processing. For a general purpose
OS the normative assumption is both are interrupt driven.
Where an inter-dependency between the halt and interrupt
mechanisms of the processor is exploited. In this study, we
allow Linux’s scheduler and default idle policy to decide
if a core should be halted and to what state. This policy
exploits various statistics to estimate how long the core is
likely to be idle. It takes into account an estimate of when

the next interrupt will likely occur from any source. This is
a subtle implementation that interacts across many layers
of the OS software, including the device driver. The idle
driver framework also includes code provided by processor
manufacturers to evaluate latency penalties and suggested
minimum residency times. This allows us to see the impacts
of making informed decisions regarding sleep states.

In contrast, the library OS explores two simple policies: 1)
when there is no work to process on a core, the processor
is put into the deepest c-state (C7), thus ignoring any trade-
offs in use of other sleep states® so that we can focus on
the interaction of slowing down the processor and adjusting
interrupt delays with the use of a fixed deep sleep, and 2)
using an aggressive poll loop on all cores to check for 10
events such that the processor is always kept busy and no
idle policy is used.

3 Performance and Energy

In this section, we discuss the decomposition of figure 1
timeline relating to slowing down the processor, delaying
requests, and OS specialization for network processing.

3.1 Interactions with Slowing Down the processor

The use of DVFS in a processor allows software to adjust
the energy consumption of CMOS based logic while trading
off instruction execution speed. As noted in [12, 15, 47, 52],
static or leakage energy consumption (i.e. caches, TLBs) is
not particularly affected by DVFS but induces a base cost
for keeping a fixed core architecture active.? An implication
is that workloads which primarily use memory operations
will suffer fewer performance penalties induced by a slowed
processor while gaining energy saving benefits.

Our study explores how "slowing down" processing via
DVFS interacts with the processing of network driven soft-
ware stacks and the resultant energy and performance re-
alized. We view DVFS as a speed control setting that can
dilate CPU processing components of the request timeline
in exchange for reduction in energy consumption.

From this perspective, the three obvious components that
can be affected are OS Request, Application and OS Reply
processing. For any given OS, there will be a hot-path instruc-
tion sequence that will be commonly exercised to process
each request packet. The OS implementation will determine
the type of instructions that will comprise of this path for
a particular workload. As such, at the fastest DVFS setting
there will be a characteristic mean number of cycles that
will be required and thus an instructions-per-cycle (IPC) ef-
ficiency realized. It is important to note that better IPC does
not necessarily imply better or worse performance or energy.
What matters more is the amount of application work done

3We have explored shallower c-states but focused on C7 as it had the most
energy savings with minimal performance degradation.
4Opposed to big-little or re-configurable core architectures.

Name Scenarios Nature | CPU
NetPIPE 64B,8KB,64KB,512KB CL Low
Node]S na CL High
Memcached 200K, 400K, 600K OL Low
Memcached-Silo 50K, 100K, 200K OL High

Table 1. Workload configurations. The column Nature in-
dicates open (OL) -versus-closed (CL) loop nature and CPU
indicates application work demand.

per energy spent; as shown in §5.2.2, a more efficient imple-
mentation that uses less instructions, though with worse IPC,
can still result in better performance and energy efficiency.

3.2 Interactions with Delaying Interrupts

As observed in [15, 21], the "latency-slack" between the mean
time to service a request and the SLA target of an application
creates an opportunity for energy-performance trade-offs.
Further, these works suggest creating energy management
policies that delaying request processing in order to interact
with DVFS and c-states in latency sensitive workloads to
yield useful trade-offs. Both these works build an applica-
tion specific prediction model of the time that is required
to service requests and take a specification of the required
tail latency SLA target. The controller strategies exploit a
combination of delaying processing and slowing down to
find an optimal setting that ensures acceptable tail latencies
while reducing the energy consumption. The intuition is that
there are advantages to using batching to consolidate idle
time, therefore lengthening the time that the processor is
in deeper sleep states and additional energy savings from
slowing down processing given the latency slack.

A common feature of modern high speed NICs is the abil-
ity to delay the delivery of interrupt when an event such as
packet arrival or transmission completion occurs. By manip-
ulating this setting, software can limit the minimum time
between interrupts or in other words the maximum rate at
which the NIC events can interrupt the processor. The NIC
used in this study exposes this mechanism via an Interrupt
Throttling (ITR) setting [1]. Software uses the ITR register to
configure a delay in 2us increments. If the spacing of events,
such as packet reception, is less than 2us x ITR the NIC will
delay assertion. If on the other hand events are sufficiently
separated an interrupt will be asserted immediately. By de-
fault the Linux device driver attempts to automatically set
this interrupt delay value to reduce interrupt overheads. We
disable this feature and manually control its value to explore
the impact of delaying interrupts on performance and en-
ergy. Delaying interrupts introduces an additional control
that can interact with OS code and packetized payloads in-
duced by Message Transmission Unit (MTU) constraints. If a
request requires several MTU’s then delaying interrupts can
help reduce the interrupt processing overheads. Similarly,
this can also induce prolonged quiescence periods in which
processor idle policies can take advantage of.

3.3 Interaction with Specializing OS Paths

In this study, a baremetal library OS is used to reveal the
value of OS path specialization against a general purpose
OS, we believe this will help further motivate the adaption
of specialization even in general purpose systems. OS spe-
cialization for a single application means that in figure 1, all
of the Request Servicing in the timeline is affected. As the
system no longer needs to support other processes and mul-
tiplex different devices, the entire software can be dedicated
towards one use-case, furthermore, more application work
can thus be done per instruction. In the case of a service ori-
ented workload that has significant application work, such
that the fraction of the instructions composed by OS network
processing is small, there is a potential for improved perfor-
mance and energy. Customized OS paths can both reduce the
time spent in the OS processing and improve the application
code IPC (fig. 9) due to reduction in architectural hazards
associated with interrupts, protection domain crossing, etc.
This time reduction can also increase the utility of using
DVFS and delaying interrupts to find optimal settings for
different workloads.

Specialization also enables exploring alternate policies
such as removing the Request Detection, Quiescent, and
Idle Policy categories from figure 1 altogether to keep the
CPU always busy with a polling loop. This alternative policy
simplifies the complex control problem of managing inter-
rupt delays and sleep states usage, in addition, given that
polling is a CPU operation and will interact with processor
speed settings, it is thus possible that with efficient OS paths
and a slowed processor via DVFS, polling can be used to
find a more energy efficienct way of supporting different
workloads (§5.1.3 §5.2.1).

4 Experiment Setup
4.1 Hardware Platform

Our experimental cluster consists of seven nodes, each hav-
ing 16-core processors of either Intel(R) Xeon(R) CPU E5-
2690 @2.90GHz or Intel(R) Xeon(R) CPU E5-2650 @2.60GHz
type. All processors have Intel 82599ES 10-Gigabit SFI/SFP+
NICs, and are configured with a mix of 126 GB and 250
GB RAM. The node used to boot into the baremetal library
OS, EbbRT, and Linux uses a Intel(R) Xeon(R) CPU E5-2690
@2.90GHz processor with 126 GB of RAM. While the hard-
ware used in this study are not modern, the two mechanisms
used are still commonly supported [4, 29, 66].

We ensured hardware hosting Linux and the library OS
are setup in a similar way by carefully configure IA-32 Ar-
chitectural MSRs and processor specific MSRs (see Tables
35-2 and 35-18 in [36]) as well as NIC features: direct-cache
injection (DCA) disabled, receive-side scaling (RSS) enabled
(to distribute packets for multi-core processing), and hard-
ware checksum offloading enabled. We also match the values
of the number of NIC transmit and receive descriptors and

write-back thresholds for packet transmissions. Additionally,
to minimize system noise, hyperthreads and TurboBoost are
disabled on all processors. While prior studies have included
TurboBoost in performance-energy studies [15, 28, 47, 75],
there have also been reports of energy anomalies when used
with different sleep states [52].

4.2 OS Software

4.2.1 Linux. We build a set of application-specific Linux
appliances for the four workloads listed in table 1. These
appliances are specially constructed to run a RAM-based
filesystem and contain only a small set of system libraries
and kernel modules required to run their constituent appli-
cations. We construct these appliances from a base Debian
10.4 distribution and use a custom 5.5.17 kernel which we
built using a modified configuration file created for support-
ing high performance; following suggestions from previous
work that studied Linux core operation costs [80]. To avoid
scheduling overheads and noise, we pin all applications to
physical cores. In addition, we disable Linux irgbalance and
affinitize packet receive interrupts to their respective cores.

4.2.2 Library OS. We ported EbbRT [82], an open sourced
library OS, to run baremetal by developing a device driver
for the Intel 82599 NIC [38]. EbbRT is used as a platform for
exploring specialization of OS paths and our findings are
extensible to other systems since EbbRT shares similar struc-
tural properties (such as run-to-completion, event-driven
execution model, single execution domain, and compile-time
optimization) with other high performance OSes and sys-
tems developed for accelerating network workloads [3, 11,
41, 45, 58, 61, 62, 68-70, 74, 76, 78, 79, 91].

EbbRT consists of specialized components written in C++°,
with a NIC driver, a custom TCP/IP stack, virtual and physical
memory allocators®, and a generic I/O buffer’ It is packaged
as a library of configurable modules and gcc-5.3.0-based tool-
chain targeting the base components of the OS.

Applications are ported to it by configuring the neces-
sary OS components and compiling the application source
along with any dependent libraries using this tool-chain.
This generates a single application-specific binary that is
compile and link-time optimized with the OS code. Our port
enables application-specific binaries to boot directly on our
hardware platform. Once booted, OS and application code is
executed under a single supervisor privilege domain.

Given the design and implementation for single-application,
non-preemptive processing via an optimized OS and applica-
tion binary, library OS components can avoid many checks
and streamline execution, ranging from interrupt dispatch

5 All components are multi-core functional and optimized to aggressively
use per-core memory and fine grain locking.

®Memory allocators make aggressive use of large pages and pinned memory
to avoid page-faults.

71/0 buffers are designed to enable zero-copy application data processing.

Figure 2. Small example of web visualization tool.

to application logic. The NIC device driver totals over 3000
lines of code and interfaces with EbbRT’s multi-core TCP/IP
network stack®. EbbRT provides an interface for statically
setting interrupt delay values. We use this interface in our
study as we sweep across interrupt delay values. The NIC
driver also exposes a configurable constant (set to 64 for all
our experiments) that is used to control how many packets
can be processed in a single interrupt invocation before re-
turning to the event-loop of the core on which the interrupt
was processed. This behaviour, in turn, introduces a simple
bounded per-cpu device-level poll.

4.2.3 NIC polling without sleep. The simple
run-to-completion, and lightweight event-driven execution
model of EbbRT allows us to also explore the performance-
energy trade-offs of slowing down the processor in the con-
text of a polling loop for packet processing. We use standard
techniques to auto clear hardware interrupts and enable a
tight polling loop. The loop checks a in-memory data struc-
ture in which the NIC updates whenever new packet descrip-
tors are to ready be processed. Due to this tight loop, EbbRT
will never halt the processor and thus will not use any sleep
states.

4.3 Per-Interrupt Log Collection and Visualization

In order to better understand the interactions of interrupt-
delay and DVFS under a workload, we instrument fine-grained
per-interrupt log collection in both Linux and EbbRT’s net-
work device driver. We collect the following information in
the NIC’s interrupt handler code: received and transmitted
bytes, received and transmitted descriptors, sleep state sta-
tistics, and the current timestamp (via rdtsc instruction).
In addition, we instrument per-core performance monitor-
ing counters (PMCs) to collect a set of hardware statistics

8The device driver programs the NIC using per-cpu queues and interrupts,
maintaining the affinity of TCP connections to their respective cores.

after every millisecond’ of elapsed time: instructions, cy-
cles, last-level cache misses, and standard RAPL hardware
registers on Intel processors to read per package energy val-
ues [35] as it has been experimentally validated for accuracy
in previous works [18, 19, 46, 94]. While we have validated
results against rack-level energy measures (slowing DVFS
and interrupt delay resulted in rack level energy savings), we
use RAPL instead because the granularity of the rack level
measurements (on the order of seconds) made it difficult to
attribute detailed energy use to specific system events.

Given these collected log traces, we built a web visualiza-
tion tool using Dash [72] that enables a user to dynamically
examine system behaviour across a wide range of config-
urable settings, for example, figure 2 shows how one can
view the data at different dimensions (via dropdown boxes)
of interrupt delay value, processor frequency, instructions,
cycles, time, etc. With a fine-grained log trace, we also used
the tool to zoom in on specific events that transpired in-
between hardware interrupts to 1) gain better insights at
a fine-grained manner, and 2) to generalize these insights
into broader findings as will be discussed in §5. Having this
tool gave us the ability compare and contrast different OS
behaviors and was also immeasurably helpful to visually
understand the structure in the data.

5 Experimental Analysis

The main methodology we used in our study is that of man-
ually setting DVFS and interrupt delay values to all possible
values as an exhaustive search to find optimal performance
and energy trade-off points for both Linux and the library
OS, EbbRT. We refer to these OS setups as Linux-tuned and
LibOS-tuned, respectively, in the figures below. To better
understand the degree of trade-offs in Linux, we also ran
experiments on a base configuration which we refer to as
Linux-default; in this mode, Linux’s interrupt delay and pro-
cessor speed are both controlled dynamically by its built-in
policies [20, 37]. We also explored a version of slowing down
the processor by replacing network interrupts with a polling
loop (whereby no sleep states are used) in EbbRT; we refer
to this setup as LibOS-poll in the figures.

Figures 3, 5, 8 shows overviews of all the experimental
runs gathered across the different applications and their re-
spective loads as listed in table 1. Each data point represents
a single experimental run and each experiment is repeated
ten times for stability. For each workload, we break down
the trade-offs observed by manually setting DVFS and inter-
rupt delay in both OSes into measurements of performance
(e.g. time for closed-loop workloads and 99% tail latency for
open-loop workloads) and measurements of energy use. In
order to reason about these trade-offs, we use two graphical
mechanisms to highlight the differences:

The millisecond gap is due to sampling granularity of RAPL.

1. The size of each point represents the degree with which
interrupt delay is used; the larger the size, the more
interrupt delay value is increased while the smaller the
size the more it is decreased (e.g. faster IO interrupts).

2. The color gradient of each point represents the degree
of slowing down processor speeds; the darker the
color the more the processor has been slowed (less
energy use) and vice-versa faster when the color is
lighter (more energy use).

Finally, for each of the system configurations studied, the
configuration that yields the best performance and lowest
energy is indicated with + and X respectively.

5.1 Closed Loop Workloads

Figure 3 illustrates the set of closed-loop workloads that we
study, all of which are run on a single core with a single con-
nection. Netpipe [84] involves sending messages of identical
size between two systems for a fixed number of iterations.
We run Netpipe in a symmetric configuration, whereby the
client and server sides run the same software stack and are
configured with the same performance parameters. This ap-
proach allows us to analyze Netpipe performance precisely,
as it eliminates any potential ambiguity in the measurements
that may arise from computational differences between the
communicating client and server. While Netpipe isn’t a re-
alistic workload in the datacenter, it allows us to explore
different message sizes, opening up the scope of how the
DVEFS and interrupt delay affects time and energy. Linux
runs NetPIPE-3.7.1 while the library OS uses a custom ver-
sion ported to its interfaces. We fix the iteration count at
5000 and show results for a range of message sizes 1°. As
message size increases, the workload becomes more network
bound; Linux suffers an additional memory copy from kernel
to userspace compared to the libOS.

NodeJS [42] consists of a JavaScript HTTP Webserver
running inside a nodejs runtime. A single client running the
wrk-4.0.2 [26] benchmark!! sends requests to the server for a
fixed period of time. The server responds to each request with
a small static payload of size 148 bytes. Linux runs nodejs-
0.10.46, and the library OS runs the same version ported to
support baremetal nodejs by providing OS interfaces that
link with the V8 [27] JavaScript engine and libuv [57].

Given the nature of closed loop workloads, one would
ideally minimize both time and energy. Therefore we use a
single value, the product of time and energy, as a measure
of energy efficiency for comparison between the two OSes.

5.1.1 Reducing time to save energy for small payloads.
One mechanism to reduce time across all the closed loop
workloads is to always use a low interrupt delay value as
shown in figure 4(c). With small payloads, reducing time

10We found that the 10 GB link is close to saturation when a message of
size greater 700 KB is exchanged.
11'We modified wrk to place a fixed request load of 100K.

equates to reducing energy (see figure 4(b)) as well. For
nodejs and netpipe 64B, setting a low interrupt delay (2us) re-
sulted in efficiency improvements by 2X in Linux-tuned and
a further 85% in LibOS-tuned. This is due to the lightweight
nature of the payloads and in this case, simply getting the
work done fast leads to best energy efficiency.

5.1.2 Effects of interrupt delay induced batching on
performance and energy. Polling (dark datapoints) results
in best energy efficiency for Node]S and NetPIPE at 64 B, 8
KB message sizes and for interrupt-based configurations, a
fast interrupt delay value is used. In contrast, as netpipe pay-
load sizes increased to 8KB, 64KB, and 512KB, the interrupt
delay value that yielded best energy efficiency also became
slower (up to 28us at 512 KB). A 10 GbE NIC, assuming no
network jitter and switching cost, can transmit at an optimal
rate of 1250 bytes/us. Therefore, the interrupt delay value can
be used to effectively determine how much payload the software
should process in a fixed quantum. With larger message sizes,
one can imagine portions of its payload being transmitted
over the wire and processed by software asynchronously.
The interrupt delay value that yields best efficiency is indi-
cating a "sweet spot” with which the software should pace
packet processing and save energy by sleeping during the
its quiescent periods.

By adjusting interrupt delay values in accordance with par-
ticular payload sizes, Linux-tuned exhibits improved energy
efficiency over Linux-default up to 80%. Due to specialization
of the library OS, figure 4(a) shows that it always uses fewest
instructions, even in computationally heavy workloads such
as nodejs. This efficiency, coupled with a custom interrupt
delay, enables LibOS-tuned to improve its energy efficiency
over Linux-tuned by another 2X.

5.1.3 Trade-offs in library OS polling. We compare the
performance and energy trade-offs between slowing down
the processor while the library OS is in a polling loop (LibOS-
poll) and slowing down both processor and interrupt delay
(LibOS-tuned). For nodejs, LibOS-poll only results in a 4%
better energy efficiency than that of LibOS-tuned, primarily
due to nodejs runtime already using an application-level poll
to check for new packets.

The difference in energy efficiency for LibOS-poll is quite
dramatic as message size increases in netpipe. With 64B
and 8KB message sizes, polling improves this efficiency by
1.6X and 3X respectively over LibOS-tuned (11X over Linux-
default). This is because for smaller payload sizes, getting
the work done fastest results in the lowest energy use and
mirrors the explanation in §5.1.1. At 64KB and 512 KB, the
workload becomes more network bound and as a result,
polling results in worse energy efficiency by up to 2X com-
pared to LibOS-tuned. At these larger message sizes, polling
only reduced time by around 10% while energy consumption
increased over 2X than interrupt-driven LibOS-tuned, which
is indicative that packets spent more time on the wire than in

30 1e2Node)S Webserver a5 NetPIPE 64 B 9 NetPIPE 8 KB lel NetPIPE 64 KB le2 NetPIPE 512 KB

35 — Fast
B LibOS-tuned
= - Loospoll | % 2.4
I Linux-tuned
2.8 4.0 N Linux-default J 8 g
% 2.2
3.0

E 2.6 3.5
S 7)
<] c
Z24 3.0 g
= X 25 o
£ 6 £
222 =
c 2.5 o
S o
o o
= 2.0 8

2.0 3 o
= 2.0 £
&

+ ,

1.5 % —
+ : Min-Time 1.5
X : Min-Energy
1.6 O : Best-
1.0 3 Efficiency
. - ; . ; ; . T T ; T . ; T Slow
5.0 7.5 10.0 0.05 0.10 0.15 0.2 0.4 0.6 0.8 1.0 5.0 5.5
Time (secs) Time (secs) Time (secs) Time (secs) Time (secs)

Figure 3. Overview of closed loop experiments (X and Y axis are scaled differently to expose structure). LARGER dots
uses SLOW interrupt delay; Other visual cues: A darker color indicates slow processor frequency; X indicates lowest energy
consumption; + indicates lowest time spent; O indicate best energy efficiency. Polling (grey-black datapoints) results in best
energy efficiency for Node]S and NetPIPE at 64 B, 8 KB message sizes. For interrupt-based configurations, a fast interrupt
delay value is used to achieve best efficiency. At 64 KB and 512 KB for NetPIPE, best efficiency uses slow DVFS with a slow
interrupt delay value that trades off speed and energy savings most efficiently. Polling largely inefficient at 64 KB and 512 KB.

1lel0 Node]S 15 1e8 Netpipe 64 B 1e8 Netpipe 8 KB 10 1e9 Netpipe 64 KB 1e9 Netpipe 512 KB
) : [] . AN
5 1.0 | mud MM 6 et
o piih
505 * = . LiboSTuned [0.5] g % 4
‘@' 0.5 1 .r* Linux Tuned ## 5 m,,
£ W N X X X R x % x X
003500 5000 7500 2 4 25 5.0 7.5 50 100 400 600 80(
(a) Energy Efficiency
3 10
S 400 i ! ! ! i m! o "" 40 l150
> * x N a4
o Sk k A ’ li'
£ o LSyl i
< 1 X “"llll "l . 20 "hoo
200 | ol NNeian & % % (171 LU] st | i i ; . E
0 50 20 40 40 25 50 75
(b) Interrupt Delay Value (us)
0.4 *10.6 . - "]
o P i i i N m 2 |5_5 T —
— H [] -
o zi:m"i 'BE L 04 -l ! 5 !
E : x MR [’ " il ! l 5.0 mezee
=10 l ! ! x I 0.2 I!i I' * llil 4 ! ®J. -! [] X
= X 1 o
i 111 CE W+ | Wy !0 R
0 20 40 20 40 25 50 75 25 50 75
(c) Interrupt Delay Value (us)
n leb 1e4 le4 le5 6 le5
2 [1.5 1.0 %
S 4 h »* LibOS Tuned
=2 n n " 1 4
ol L] L § Y3 ! 1.01 5k uni--:---""..- ”"* Linux Tuned 05 ™
AL TR TR R H 2 ;%II!! Mg ' o 2
S 0 DowkxxxKxKxx u % % %05 LTS PE ‘ [T ! " | | l ¥ | | " | =
= 50 20 40 20 40 25 50 75 25 50 75

(d) Interrupt Delay Value (us)
Figure 4. Detailed plots of some gathered statistics for the above closed loop experiments. (X and Y axis are scaled differently

to expose structure) These plots only compare LibOS-tuned and Linux-tuned. All figures in a vertical slice is mapped to
the same workload. Though (a) shows similar amount of instructions in both OSes, (b)(c) shows LibOS-tuned using both less
energy and time to finish same workload, indicating efficiency of path specialization. In (d) for Node]S and Netpipe 64 B, the
big differences in interrupts is a result of slow-to-stay-busy effect as described in §5.1.4.

software. This phenomena suggests the importance of a hy-
brid strategy that switches between poll and interrupt-driven
OS policies as payload size changes.

5.1.4 Overlapping work with IO. In both nodejs and
netpipe with message size 64B, we find another interest-
ing effect. In figure 4(d), for all the various interrupt delay
values, the total number of interrupts can be lowered by 90%.
Upon closer examination, we find slowed DVES caused this
decrease in number of interrupts.

The reason for this behavior in the library OS is described
briefly in §2.3.2: The physical transmission of OS reply pack-
ets by the network driver can occur asynchronously with the
unwinding of the stack back to the nodejs application and
then back down to the network receive function to check for
new packets. The slowing down of the processor causes this
unwind path to lengthen, potentially increasing the prob-
ability that new packets have already arrived ready to be
processed by the time it reaches the network receive func-
tion. Therefore, the software is able to skip one or more
hardware interrupts (fired on packet receive) in order to ef-
fectively slow-to-stay-busy and process this new reply packet.
This scenario only occurs in the library OS due to its run-
to-completion nature and suggests that, for a structurally
different OS, other energy saving strategies can be explored.

5.2 Open Loop Workloads

5.2.1 Memcached. This is a multi-threaded open loop
workload that runs on all 16 cores of a server node [32].
It consists of an unloaded client node running mutilate [40].
This client (1) coordinates with five other mutilate agent
nodes in order to generate requests to the server and (2)
measures tail latency of all requests made. All five agent
nodes are 16-core machines, whereby each core creates 16
connections, for a total of 1280 connections. This setup is
able to saturate the single 16-core server'2.

Linux runs memcached-1.6.6 and the library OS version
uses a re-implemented version of memcached, written to
EbbRT’s interfaces, and supports the standard memcached
binary protocol. We run a representative load from Face-
book [6] (ETC) which represents the highest capacity de-
ployment. It uses 20 to 70 byte keys and 1 byte to 1 KB
values and contains 75% GET requests.

Impacts of Slowing Down in Different OSes Struc-
tures:
fig. 6 shows that although LibOStuned has worse IPC than
Linux-tuned across the three QPS loads; it used on average
2.5X fewer instructions than Linux, which implies a greater
fraction of its instruction were spent getting the work done.
Furthermore, given that memcached is not compute heavy,
most of its instructions are therefore memory bound; this
also lowers the effect of a slowed processor to increase tail

2Mutilate is configured to pipeline up to four connections to further in-
crease its request rate.

latency. The vertical nature of the library OS in fig. 5 and
fig. 7 illustrates this behavior. Furthermore, this suggests
the logic and data structures used by a specialized library
OS results in instruction mixes that can take advantage of
energy saving benefits of slowed DVFS without sacrificing
performance.

Figure 7 also shows that the library OS can support higher
QPS loads than Linux due to its specialized paths. We see
the opposite of this behavior in Linux where, at 600K QPS, it
approaches 75% of its peak QPS. There is also a clear trade-
off between slowing down processor speeds and an increase
in tail latency (higher latency points have darker gradient
color). In figure 7, memcached is scaled higher to 1500K QPS,
which is 75% of the peak QPS of library OS. At this QPS rate,
we can begin to see similar trade-offs in both OSes.

Impact of Slowing Down Processors on Sleep States:
Figure 6(a) shows that as a processor slows down, the energy
savings from slowing down interrupts also decrease. In this
figure, bold lines indicate the mean energy use at fastest
interrupt delay, while dotted lines indicate mean energy use
at the slowest. We find that across the QPS loads and the
two OSes, the average energy savings from slowing down
interrupt delay at the slowest processor speed is 52 J while
it is 342 J at the fastest processor speed. As discussed in
§3.1, the effect of slowing down the processor results in the
lengthening of the application and OS work. Therefore, this
potentially reduces the energy savings that are brought about
by taking advantage of sleep states during prolonged idle
periods. Furthermore, such slow-down is undesirable due
to SLA requirements which result in stringent time budgets
that requests must adhere to.

However, figure 5 shows that it is a combination of slow
DVFS and interrupt delay that results in lowest energy use
across both Linux and the library OS. Figure 6(d) shows
the direct effect of interrupt delay on tail latency. The ben-
efit of slowing down interrupts consists of 1) lowering the
number of interrupts fired, which also lowers instruction
use and potentially promotes better packet coalescing (see
figures 6(b)(c)), and 2) ensuring a guaranteed period of qui-
escence such that the processor can take advantage of poten-
tially deeper sleep states. However, these trade-offs will be
different dependent on other factors such as an OS’s packet
processing efficiency and policies that govern the use of
sleep states to maximize idle states. Moreover, the benefit of
slowing down interrupts versus processor speed is subtle as
the implications of slowing down the processor affects entire
software stack whereas interrupt delay has a fixed impact.

Benefits of Interrupt Delays on Performance:

Figure 5 also demonstrates the ability to use a static fast in-
terrupt delay value in order to minimize tail latency (smaller
dots). Linux-tuned improved its tail latency over Linux-default
by 40% at 200K QPS and 25% at 600K QPS. As discussed in
section 2.2.2, a faster interrupt delay can induce a form of
polling with Linux’s NAPI policy by constantly waking up

le3 200K QPS 400K QPS 600K QPS
+ : ¥ —TFast
301 + : Min-Latency | i S L
. X Min-Energy + Il LibOS-poll Ne)
B Linux-tuned +* ()]
~2.5 { °° = Linux-default Q
g wn
>’2 01 & * e 1= S =
S *x XK x T°% _ e o
2 sl % + 33 2 o it
wl5l xg & 1 %o *ea - e | | K bt]
A B S Sl e :
1.0 "8 @ @ 1 A r° = == Q.
) v - -
0'50 200 400 0 200 400 0 200 400 Slow

99% Tail Latency (usecs)
Figure 5. Overview of memcached experiments. x indicates lowest energy. + indicates lowest latency. In contrast to Linux, the
vertical nature of LibOS-tuned shows its efficiency and instructions less impacted by slowed DVFS. Distance from Min-Latency
to Min-Energy in contrast to Linux-default shows potential in exploring trade-offs through coordinated use of both mechanisms.

30.le3 200K QPS 400K QPS 600K QPS
2.5 .
S
2.0
2
215 rﬂ/’/
“ X
1.0 :
05 15 2.0 2.5 15 2.0 2.5 15 2.0 25
(a) Processor Speed
31e7 -
" LibOS-tuned
k4 ~ Linux-tuned |X
S »
£2 ¥
2
é].' §a& i
3 %
R
* ¥*
0 * % ow oy X %y X ¥
0 200 400 0 200 400 0 200 400
(b) Interrupt Delay
le—1 _ §
EERI"IRNR
* x
: it
o *
2 K | '
G0 200 400 0 200 400 0 200 400
(c) Interrupt Delay
6le2
N
2 2 R i
>4 2 i . B
v x 3
2 I I ¥,
] Al 1 e
£ 4 ¥ ¥ ¥
=43 o i |
8]
e
s (g
o
0

0

200 400 0 200 400 0 200

(d) Interrupt Delay
Figure 6. Some detailed plots between LibOS-tuned and
Linux-tuned in memcached. Each vertical figure is mapped to
the same QPS. In (a), bold lines connect points that use fastest
interrupt delay and dashed lines use slowest interrupt delay;
this shows additional energy savings induced by batching. In
(d), one can see stability of tail latency values of LibOS-tuned

compared to Linux-tuned.

10

le3 1000K QPS 1500K QPS

Fast
+ T = LibOS-tuned
3.0 X : Min-Energy B LibOS-poll
+ ?
=25 g
> > * n
o ; S
wn
220 + X o
i * * v]
e ° [))
*ergo ° ° L a
i o - e e - e P (]
L5 x‘"‘:o ‘ ‘ :’s [()
‘;(L3 ®) x
1.0, 200 400 0 200 400 Slow

99% Tail Latency (usecs)

Figure 7. Overview of memcached experiments at 1000K
and 1500K QPS. Vertical nature of library OS largely holds
even at higher QPS loads and polling still competitive with
interrupt-based in both tail latency and energy.

the processor to do the OS and application work. This in-
duced behavior also increases energy use by 38% at 200K
QPS and 5% at 600K QPS which represents another space
in the energy-performance trade-off of memcached. While
prior research have used static setting of a fast interrupt
delay value for experimental stability [68, 70], we are the
first to show its energy implications.

Polling Can be Energy Efficient: Similar to Netpipe
with 64B messages (see figure 3), figure 5 shows that using an
OS poll for network-bound workloads with a small payload
results in the best performance (tail latency) in memcached.
Although memcached is a more complex workload than Net-
pipe with thousands of connections and requests pipelined
and multiplexed on multiple cores, LibOS-poll running mem-
cached can still be energy efficient through slowing down
the processor. Using X point (Min-Energy) of LibOS-poll as

reference, we find that at 200K QPS, LibOS-poll improves
both 99 percentile tail latency by 27% and energy by 35% over
LibOS-tuned at Min-Latency point. As the load increases, by
comparing the Min-Energy points, we find that while LibOS-
poll consumes 11%-38% more energy across the rest of QPS
loads, its tail latency was 10%-90% better. Hence a library
OS poll reveals an additional trade-off space for energy and
performance in memcached.

5.2.2 Memcached-silo. This is a workload built on top of
the normal memcached protocol. It is more intensive both in
computation and memory-use than regular memcached, as
it is structured such that every memcached request triggers
a corresponding set of TPC-C transaction processing logic
on a in-memory database [89]. We ported the memcached-
silo implementation from [73, 74] to EbbRT. The workload
mix and SLA constraints of memcached-silo follow from
those used in the memcached experiments in §5.2.1. However,
given its heavier application nature, we only needed two 16-
core client nodes at 16 connections per core to saturate a
single 16-core memcached-silo server.

Slowing Down has Benefits Even in Computation-
ally Heavy Workloads:

In contrast to memcached workload shown in figure 5, fig-
ure 8 shows that as the application work gets larger for each
memcached request; the trade-offs of tail latency and en-
ergy become more discernible in both Linux and the library
OS (note the color gradient darkens horizontally instead of
vertically). Surprisingly even in a computationally heavy
workload under a stringent SLA, it is still possible to delay
both processor and interrupts to further save energy; in fig-
ure 8 at 200K QPS, Linux-tuned improved its tail latency by
21% and energy by 20% over Linux-default, further LibOS-
tuned improved its tail latency by 34% and energy by 44%
over Linux-tuned. Figure 9(a) shows that slowing the proces-
sor via DVES results in the most energy savings and using
interrupt delays on top leads to additional savings. However,
in contrast to figure 6(a), the effects of delayed interrupts
are greatly diminished as the QPS load increases given the
workload nature. One can see this effect in the 100K and
200K QPS experiments where the configuration that yielded
Min-Energy for the library OS is represented by a signifi-
cantly small dot, implying a a fast interrupt delay value. This
observation harkens back to the implications of a slowed
processor on the packet processing path (§3.1); furthermore,
this effect is exacerbated as application logic gets heavier.

Library OS IPC Efficiency: Even though figure 9(b)
demonstrates similar number of instructions between Linux-
tuned and the LibOS-tuned, the IPC measurement in fig-
ure 9(c) reveals that a specialized OS can execute instructions
more efficiently even in an application bound workload. This
IPC benefit not only leads to energy efficiency but also cre-
ates more slack for the library OS to take advantage of slowed
down processor. Figure 9(a) shows that at faster processor

11

speed values in the 50K and 100K QPS experiments, the li-
brary OS was still able to slow down interrupt delays to save
more energy than Linux by 50% even in a computationally
heavy workloads.

6 Related Work

Our work falls within a wider space of research on energy
proportional computation in datacenters [9, 22, 88]. Much
of this research stems from the challenges of improving the
performance of network-bound datacenter workloads like
MapReduce [14] and in-memory key-value stores [58, 74]
while keeping energy consumption at bay. These challenges
can be attributed to the complex diurnal trends that are char-
acteristic of datacenter-level utilization, whereby idle time is
common and must be optimized for [50, 63, 87] while simul-
taneously maintaining the ability to support high-utilization
peaks and strict latency constraints [5, 15, 16, 30, 31, 44, 55,
59, 65, 74, 90, 92, 93]. Our work examines both in-memory
key-value stores and its modified version with a heavier pro-
cessing component as well as closed loop applications. Our
goal was to gain better insight into the systemic impacts
of performance and energy when slowing down network
workloads using the two hardware mechanisms of DVFS and
ITR delay together.

There is a wide range of work that targets energy propor-
tionality with a focus on designing OS policies and mecha-
nisms for power management. Most of this work presents
hardware level optimizations that manipulate processor speed
mechanisms such as DVFS [17, 20, 21, 23-25, 39, 48, 49, 52—
54, 56, 81, 85], processor power limiting mechanisms such as
RAPL [28, 31, 35, 59, 60, 71, 92], and idle power states [5, 15,
43, 47, 65, 77] (c-states) by applying feedback control mech-
anisms and relying on activity models. The authors of [60]
and [28] go a step further, exploring and characterizing the
interference of co-located latency-critical versus best-effort
tasks and high versus low CPU demand tasks when sub-
ject to energy tuning via DVFS and RAPL. In doing so, they
highlight limitations in using hardware features alone for
power management. Similarly, the authors of [33, 87] iden-
tify a need to step away from relying entirely on hardware
solutions and focusing instead on software optimizations,
such as VM migration controllers for power management of
an ensemble of nodes. Previous works have advocated for
full-system and hardware optimizations for energy [52, 63],
our work builds on their observations and assert that the OS
itself plays a big role as well.

The previous research efforts present significant energy
savings from well designed dynamic policies and carefully
chosen static configurations, however, we are driven to ex-
plore the space beyond current findings with a focus on un-
veiling the role of the OS in exploiting activity and idleness
and also by introducing interrupt delay as an additional knob
in this exploration. We find that this exploration is timely

35 le3 50K QPS 100K QPS 200K QPS 300K QPS — Fast
+ + + +
% 3.01 ;
E * = X >
2 * *, 2 2
=25 * * LA’V\/\ -+ g
8 * *x x * x + ° g‘
: { -y e 1P
a 2.01 + + =
5 - e 2
L; 1.5 -K] < !‘-A .1h’ g
. = = : g
g &a&‘ % 9"‘ = t!gg:'turr'd + : Min-Latency &
S10d ' | :] 1BOSEE 1|x : Min-Ener
w 1.0 s AN B Linux-tuned 9
I Linux-default
0.5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Slow
100 300 500 100 300 500 100 300 500 100 300 500

99% Tail Latency (usecs)

Figure 8. Overview of memcached-silo experiments across 50K, 100K, 200Km and 300K QPS. As application work gets larger,
horizontal nature of points indicate slowed processor affects latency more, however, can still explore performance and energy
benefits with DVFS and interrupt delay induced batching in both LibOS-tuned and Linux-tuned. The base tail latency of this
workload is larger than memcached due to nature of TPC-C application work. Polling is largely energy inefficient compared to

interrupt-based but is competitive in tail latency.

le3 50K QPS le3 100K QPS le3 200K QPS

2.5 2.5 LibOS Tuned 2.5
- * Linux Tuned
=2.0 2.0 2.0
B X
o
al5 1.5 1.5
& D
1.0 1.04 1.0
0'51.0 1.5 2.0 25 3.00'}0 1.5 2.0 25 3.00'?“0 1.5 2.0 25 3.0
(a)_ . Processor Speed
lell lell lell
3 3 3 xxx kAR
w
c
o
52 2 2
g XX RRRXRARER
@
Sy wxxnnny ! !
Q.O 1.5 2.0 25 3.0 (i.O 1.5 20 25 3.0 9.0 1.5 20 25 3.0
(b) Processor Speed
1.0 1.0 1.0
0.8 %] 0.8 x 0.8 - 2
. % . % .
x X K 'R X x % * 3 [}
0.6 < %06 X v ¥ 06 *
& L ! f ¥ * x % " # 1
To4l %k LS 0.4 X T x* 0.4
*
0.2 0.2 0.2
O'Q.O 1.5 2.0 25 3. O'?.O 1.5 20 25 3. 0'9.0 1.5 20 25 3.0

(c) Processor Speed

Figure 9. Detailed plots of some gathered statistics of the
above QPS loads. Compares LibOS-tuned and Linux-tuned.
Each vertical figure is mapped to the same QPS. In (c), with an
application heavy workload, LibOS-tuned actually achieves
better IPC than Linux-tuned even though (b) shows simi-
lar amount of instructions; indicating more work done per
instruction for a specialized OS.

given the range of work on optimizing OS paths for perfor-
mance, from NIC driver mechanisms [10, 45, 69] to the net-
work stack [10, 41, 62] and the dataplane [11, 68, 70, 74, 82].
Our work was also influenced by previous work in energy

12

efficiency by slowing down both the networking and proces-
sor: uDPM [15] is a application-level policy for memcached
to delay request processing and maximize idle periods where
deep sleep states can then be utilized, in [51] the authors
combined bandwidth limiting in Cray clusters and scaling
processor frequency to reduce energy use of HPC applica-
tions. In contrast to uDPM, we use a hardware register on
the NIC to induce batching as this can be commonly found
in commercial NICs. Lastly, we are the first to conduct such
an in-depth study with a baremetal specialized OS.

7 Conclusion

In this study, we conducted tens of thousands of experimen-
tal runs and accumulated over 5 TB of data. Our data also
includes fine-grained timeline of various hardware/software
statistics at a per-interrupt granularity (not heavily discussed
in paper). This paper only scratches the surface of what can
be distilled from the data and we plan to open source both
the tools and data so that others can use this methodology
to enable the systems research community to explore and
frame performance results in context of energy as advocated
by Mudge et al [67].

References

[1] [n.d.]. Improving Measured Latency in Linux for Intel® 82575/82576
or X540/82598/82599 Ethernet Controllers. https://www.intel.com/
content/www/us/en/embedded/products/networking/82575-82576-
82598-82599-ethernet-controllers-latency-appl-note.html.

2012. When Poll Is Better than Interrupt. In 10th USENIX Confer-
ence on File and Storage Technologies (FAST 12). USENIX Association,
San Jose, CA. https://www.usenix.org/conference/fast12/when-poll-
better-interrupt

[2

—

https://www.intel.com/content/www/us/en/embedded/products/networking/82575-82576-82598-82599-ethernet-controllers-latency-appl-note.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82575-82576-82598-82599-ethernet-controllers-latency-appl-note.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82575-82576-82598-82599-ethernet-controllers-latency-appl-note.html
https://www.usenix.org/conference/fast12/when-poll-better-interrupt
https://www.usenix.org/conference/fast12/when-poll-better-interrupt

(3]

—
Ne)
-

[10

—

[11

—

[12

—

[13

[t}

(15]

(16]

Antti Kantee, Justin Cormack. [n.d.]. Rump Kernels: No OS? No Prob-
lem! https://www.usenix.org/publications/login/october-2014-vol-39-
no-5.

ARM. [n.d.]. https://developer.arm.com/documentation/den0013/d/
Power-Management.

Esmail Asyabi, Azer Bestavros, Erfan Sharafzadeh, and Timothy Zhu.
2020. Peafowl: In-Application CPU Scheduling to Reduce Power Con-
sumption of in-Memory Key-Value Stores. In Proceedings of the 11th
ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC °20).
Association for Computing Machinery, New York, NY, USA, 150-164.
https://doi.org/10.1145/3419111.3421298

Atikoglu, Berk and Xu, Yuehai and Frachtenberg, Eitan and Jiang,
Song and Paleczny, Mike. 2012. Workload Analysis of a Large-
scale Key-value Store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE jJoint International Conference on Measurement
and Modeling of Computer Systems (London, England, UK) (SIGMET-
RICS ’12). ACM, New York, NY, USA, 53-64. https://doi.org/10.1145/
2254756.2254766

Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. 2003. Web Search
for a Planet: The Google Cluster Architecture. IEEE Micro 23 (2003),
22-28.

Luiz Andre Barroso and Urs Hoelzle. 2009. The Datacenter As a Com-
puter: An Introduction to the Design of Warehouse-Scale Machines (1st
ed.). Morgan and Claypool Publishers.

Barroso, Luiz André and Holzle, Urs. 2007. The Case for Energy-
Proportional Computing. Computer 40, 12 (Dec. 2007), 33-37. https:
//doi.org/10.1109/MC.2007.443

A. Beifuf3, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E.
Wolfinger, and G. Carle. 2015. A Study of Networking Software In-
duced Latency. In 2015 International Conference and Workshops on
Networked Systems (NetSys). 1-8. https://doi.org/10.1109/NetSys.2015.
7089065

Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In Proceed-
ings of the 11th USENIX Conference on Operating Systems Design and
Implementation (Broomfield, CO) (OSDI’14). USENIX Association, USA,
49-65.

David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson,
Prabhakar N. Kudva, Alper Buyuktosunoglu, John-David Wellman,
Victor Zyuban, Manish Gupta, and Peter W. Cook. 2000. Power-
Aware Microarchitecture: Design and Modeling Challenges for Next-
Generation Microprocessors. IEEE Micro 20, 6 (Nov. 2000), 26—44.
https://doi.org/10.1109/40.888701

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make
Serverless Fast. In Proceedings of the Fifteenth European Conference
on Computer Systems (Heraklion, Greece) (EuroSys *20). Association
for Computing Machinery, New York, NY, USA, Article 32, 15 pages.
https://doi.org/10.1145/3342195.3392698

Yanpei Chen, Sara Alspaugh, Dhruba Borthakur, and Randy Katz. 2012.
Energy Efficiency for Large-Scale MapReduce Workloads with Sig-
nificant Interactive Analysis. In Proceedings of the 7th ACM European
Conference on Computer Systems (Bern, Switzerland) (EuroSys ’12).
Association for Computing Machinery, New York, NY, USA, 43-56.
https://doi.org/10.1145/2168836.2168842

C. Chou, L. N. Bhuyan, and D. Wong. 2019. [%4DPM: Dynamic
Power Management for the Microsecond Era. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE Computer Society, Los Alamitos, CA, USA, 120-132. https:
//doi.org/10.1109/HPCA.2019.00032

Chih-Hsun Chou, Daniel Wong, and Laxmi N. Bhuyan. 2016. DynSleep:
Fine-Grained Power Management for a Latency-Critical Data Center
Application. In Proceedings of the 2016 International Symposium on

13

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

Low Power Electronics and Design (San Francisco Airport, CA, USA)
(ISLPED ’16). Association for Computing Machinery, New York, NY,
USA, 212-217. https://doi.org/10.1145/2934583.2934616

Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. 2011.
Pack & Cap: Adaptive DVFS and Thread Packing under Power Caps.
In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture (Porto Alegre, Brazil) (MICRO-44). Association
for Computing Machinery, New York, NY, USA, 175-185. https://doi.
org/10.1145/2155620.2155641

Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna,
and Christian Le. 2010. RAPL: Memory Power Estimation and Cap-
ping. In Proceedings of the 16th ACM/IEEE International Symposium on
Low Power Electronics and Design (Austin, Texas, USA) (ISLPED ’10).
Association for Computing Machinery, New York, NY, USA, 189-194.
https://doi.org/10.1145/1840845.1840883

Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. 2016. A
Validation of DRAM RAPL Power Measurements. In Proceedings of
the Second International Symposium on Memory Systems (Alexandria,
VA, USA) (MEMSYS ’16). Association for Computing Machinery, New
York, NY, USA, 455-470. https://doi.org/10.1145/2989081.2989088
Dominik Brodowski, Nico Golde, Rafael J. Wysocki, Viresh Kumar.
[n.d.]. CPU frequency and voltage scaling code in the Linux(TM) kernel.
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt.
Mootaz Elnozahy, Michael Kistler, and Ramakrishnan Rajamony. 2003.
Energy Conservation Policies for Web Servers. In Proceedings of the 4th
Conference on USENIX Symposium on Internet Technologies and Systems
- Volume 4 (Seattle, WA) (USITS’03). USENIX Association, USA, 8.
Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power
Provisioning for a Warehouse-Sized Computer. In Proceedings of the
34th Annual International Symposium on Computer Architecture (San
Diego, California, USA) (ISCA °07). Association for Computing Ma-
chinery, New York, NY, USA, 13-23. https://doi.org/10.1145/1250662.
1250665

Krisztian Flautner, Steve Reinhardt, and Trevor Mudge. 2001. Auto-
matic Performance Setting for Dynamic Voltage Scaling. In Proceedings
of the 7th Annual International Conference on Mobile Computing and
Networking (Rome, Italy) (MobiCom °01). Association for Computing
Machinery, New York, NY, USA, 260-271. https://doi.org/10.1145/
381677.381702

Vincent W. Freeh, Tyler K. Bletsch, and Freeman L. Rawson. 2007.
Scaling and Packing on a Chip Multiprocessor. In 2007 IEEE Inter-
national Parallel and Distributed Processing Symposium. 1-8. https:
//doi.org/10.1109/IPDPS.2007.370539

Rong Ge, Xizhou Feng, Wu-chun Feng, and Kirk W. Cameron. 2007.
CPU MISER: A Performance-Directed, Run-Time System for Power-
Aware Clusters. In 2007 International Conference on Parallel Processing
(ICPP 2007). 18-18. https://doi.org/10.1109/ICPP.2007.29

Will Glozer. 2014. wrk: Modern HTTP benchmarking tool. https:
//github.com/wg/wrk.

Google. [n.d.]. V8 JavaScript Engine. http://code.google.com/p/v8/.
Akhil Guliani and Michael M. Swift. 2019. Per-Application Power
Delivery. In Proceedings of the Fourteenth EuroSys Conference 2019
(Dresden, Germany) (EuroSys ’19). Association for Computing Machin-
ery, New York, NY, USA, Article 5, 16 pages. https://doi.org/10.1145/
3302424.3303981

Nathan Hanford, Vishal Ahuja, Matthew K. Farrens, Brian Tierney,
and Dipak Ghosal. 2018. A Survey of End-System Optimizations for
High-Speed Networks. ACM Comput. Surv. 51, 3, Article 54 (July 2018),
36 pages. https://doi.org/10.1145/3184899

C. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, J. Mars,
L. Tang, and R. G. Dreslinski. 2015. Adrenaline: Pinpointing and
reining in tail queries with quick voltage boosting. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA). 271-282.

https://www.usenix.org/publications/login/october-2014-vol-39-no-5
https://www.usenix.org/publications/login/october-2014-vol-39-no-5
https://developer.arm.com/documentation/den0013/d/Power-Management
https://developer.arm.com/documentation/den0013/d/Power-Management
https://doi.org/10.1145/3419111.3421298
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/NetSys.2015.7089065
https://doi.org/10.1109/NetSys.2015.7089065
https://doi.org/10.1109/40.888701
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/2168836.2168842
https://doi.org/10.1109/HPCA.2019.00032
https://doi.org/10.1109/HPCA.2019.00032
https://doi.org/10.1145/2934583.2934616
https://doi.org/10.1145/2155620.2155641
https://doi.org/10.1145/2155620.2155641
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/2989081.2989088
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://doi.org/10.1145/1250662.1250665
https://doi.org/10.1145/1250662.1250665
https://doi.org/10.1145/381677.381702
https://doi.org/10.1145/381677.381702
https://doi.org/10.1109/IPDPS.2007.370539
https://doi.org/10.1109/IPDPS.2007.370539
https://doi.org/10.1109/ICPP.2007.29
https://github.com/wg/wrk
https://github.com/wg/wrk
http://code.google.com/p/v8/
https://doi.org/10.1145/3302424.3303981
https://doi.org/10.1145/3302424.3303981
https://doi.org/10.1145/3184899

(31]

(34

=

(35

—

(36

—

(37]

(38

[t

(39]

(40]

[41]

(42]

(43]

(4]

(45]

Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and Lingjia Tang.
2018. SmoothOperator: Reducing Power Fragmentation and Improving
Power Utilization in Large-scale Datacenters. In Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems (Williamsburg, VA,
USA) (ASPLOS ’18). ACM, New York, NY, USA, 535-548. _https://doi.
org/10.1145/3173162.3173190
https://memcached.org. 2020.
memcached/memcached.
Inkwon Hwang and Massoud Pedram. 2016. A Comparative Study of
the Effectiveness of CPU Consolidation Versus Dynamic Voltage and
Frequency Scaling in a Virtualized Multicore Server. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 24, 6 (2016), 2103-2116.
https://doi.org/10.1109/TVLSI1.2015.2499601

Intel. [n.d.]. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume. https://www.intel.com/content/dam/www/public/us/
en/documents/manuals/.

Intel. [n.d.]. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume 3B:System Programming Guide, Part 2. https://www.

Memcached. https://github.com/

intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-developer-\vol-3b-part-2-manual.pdf.
Intel. [n.d.]. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume 3C:System Programming Guide, Part 3. https://www.
intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-developer-\vol-3c-part-3-manual.pdf.
Intel. [n.d.]. Tuning Throughput Performance for Intel® Ether-
net Adapters. https://www.intel.com/content/www/us/en/support/
articles/000005811/network-and-i-o/ethernet-products.html.

Intel 82599 10 Gigabit Ethernet Controller: Datasheet. [n.d.].
https://www.intel.com/content/www/us/en/embedded/products/
networking/82599-10-gbe-controller-datasheet.html.

Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose,
and Margaret Martonosi. 2006. An Analysis of Efficient Multi-Core
Global Power Management Policies: Maximizing Performance for a
Given Power Budget. In Proceedings of the 39th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO 39). IEEE Computer
Society, USA, 347-358. https://doi.org/10.1109/MICRO.2006.8

J. Leverich. [n.d.]. Mutilate: high performance memcached load gener-
ator. https://github.com/leverich/mutilate.

EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan Thm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a
Highly Scalable User-level TCP Stack for Multicore Systems. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). USENIX Association, Seattle, WA, 489-502. https://www.
usenix.org/conference/nsdil14/technical-sessions/presentation/jeong
Joyent. 2013. Node.js. https://github.com/nodejs/node/tree/
cc56¢62ed879ad4f93b1fdab3235c43e60f48b7e.

Svilen Kanev, Kim Hazelwood, Gu-Yeon Wei, and David Brooks. 2014.
Tradeoffs between power management and tail latency in warehouse-
scale applications. In 2014 IEEE International Symposium on Workload
Characterization (IISWC). 31-40. https://doi.org/10.1109/IISWC.2014.
6983037

H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez. 2015. Rubik:
Fast analytical power management for latency-critical systems. In 2015
48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 598—610.

Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Ander-
son, and Arvind Krishnamurthy. 2016. High Performance Packet
Processing with FlexNIC. In Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16).
Association for Computing Machinery, New York, NY, USA, 67-81.
https://doi.org/10.1145/2872362.2872367

14

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen,
and Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL
for Power Measurements. ACM Trans. Model. Perform. Eval. Comput.
Syst. 3, 2, Article 9 (March 2018), 26 pages. https://doi.org/10.1145/
3177754

David H. K. Kim, Connor Imes, and Henry Hoffmann. 2015. Rac-
ing and Pacing to Idle: Theoretical and Empirical Analysis of Energy
Optimization Heuristics. In Proceedings of the 2015 IEEE 3rd Inter-
national Conference on Cyber-Physical Systems, Networks, and Appli-
cations (CPSNA ’15). IEEE Computer Society, USA, 78-85. https:
//doi.org/10.1109/CPSNA.2015.23

Wonyoung Kim, Meeta S. Gupta, Gu-Yeon Wei, and David Brooks.
2008. System level analysis of fast, per-core DVFS using on-chip
switching regulators. In 2008 IEEE 14th International Symposium on
High Performance Computer Architecture. 123-134. https://doi.org/10.
1109/HPCA.2008.4658633

Masaaki Kondo, Hiroshi Sasaki, and Hiroshi Nakamura. 2007. Improv-
ing Fairness, Throughput and Energy-Efficiency on a Chip Multipro-
cessor through DVFS. SIGARCH Comput. Archit. News 35, 1 (March
2007), 31-38. https://doi.org/10.1145/1241601.1241609

Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys,
David Culler, and Randy Katz. 2011. NapSAC: Design and Imple-
mentation of a Power-Proportional Web Cluster. SIGCOMM Comput.
Commun. Rev. 41, 1 (Jan. 2011), 102-108. https://doi.org/10.1145/
1925861.1925878

James H. Laros, Kevin T. Pedretti, Suzanne M. Kelly, Wei Shu, and
Courtenay T. Vaughan. 2012. Energy Based Performance Tuning for
Large Scale High Performance Computing Systems (HPC ’12). Society
for Computer Simulation International, San Diego, CA, USA, Article
6, 10 pages.

Etienne Le Sueur and Gernot Heiser. 2011. Slow down or Sleep, That is
the Question. In Proceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference (Portland, OR) (USENIXATC’11). USENIX
Association, USA, 16.

Jungseob Lee and Nam Sung Kim. 2009. Optimizing Throughput of
Power- and Thermal-Constrained Multicore Processors Using DVFS
and per-Core Power-Gating. In Proceedings of the 46th Annual De-
sign Automation Conference (San Francisco, California) (DAC ’09).
Association for Computing Machinery, New York, NY, USA, 47-50.
https://doi.org/10.1145/1629911.1629926

Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. 2007. Server-
Level Power Control. In Fourth International Conference on Autonomic
Computing (ICAC’07). 4—4. https://doi.org/10.1109/ICAC.2007.35
Jacob Leverich and Christos Kozyrakis. 2014. Reconciling High Server
Utilization and Sub-Millisecond Quality-of-Service. In Proceedings of
the Ninth European Conference on Computer Systems (Amsterdam, The
Netherlands) (EuroSys ’14). Association for Computing Machinery,
New York, NY, USA, Article 4, 14 pages. https://doi.org/10.1145/
2592798.2592821

J. Li and J.F. Martinez. 2006. Dynamic power-performance adaptation
of parallel computation on chip multiprocessors. In The Twelfth Inter-
national Symposium on High-Performance Computer Architecture, 2006.
77-87. https://doi.org/10.1109/HPCA.2006.1598114

libuv. [n.d.]. http://libuv.org.

Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-Memory Key-
Value Storage. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). USENIX Association, Seattle,
WA, 429-444. https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/lim

David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and
Christos Kozyrakis. 2014. Towards Energy Proportionality for Large-
Scale Latency-Critical Workloads. In Proceeding of the 41st Annual

https://doi.org/10.1145/3173162.3173190
https://doi.org/10.1145/3173162.3173190
https://github.com/memcached/memcached
https://github.com/memcached/memcached
https://doi.org/10.1109/TVLSI.2015.2499601
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\vol-3c-part-3-manual.pdf
https://www.intel.com/content/www/us/en/support/articles/000005811/network-and-i-o/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000005811/network-and-i-o/ethernet-products.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://doi.org/10.1109/MICRO.2006.8
https://github.com/leverich/mutilate
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://github.com/nodejs/node/tree/cc56c62ed879ad4f93b1fdab3235c43e60f48b7e
https://github.com/nodejs/node/tree/cc56c62ed879ad4f93b1fdab3235c43e60f48b7e
https://doi.org/10.1109/IISWC.2014.6983037
https://doi.org/10.1109/IISWC.2014.6983037
https://doi.org/10.1145/2872362.2872367
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://doi.org/10.1109/CPSNA.2015.23
https://doi.org/10.1109/CPSNA.2015.23
https://doi.org/10.1109/HPCA.2008.4658633
https://doi.org/10.1109/HPCA.2008.4658633
https://doi.org/10.1145/1241601.1241609
https://doi.org/10.1145/1925861.1925878
https://doi.org/10.1145/1925861.1925878
https://doi.org/10.1145/1629911.1629926
https://doi.org/10.1109/ICAC.2007.35
https://doi.org/10.1145/2592798.2592821
https://doi.org/10.1145/2592798.2592821
https://doi.org/10.1109/HPCA.2006.1598114
http://libuv.org
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim

(60]

[61]

(62]

(63]

(64]

(65]

(66

—

(67]

[68]

(69

—

(70

=

(71]

International Symposium on Computer Architecuture (Minneapolis, Min-
nesota, USA) (ISCA ’14). IEEE Press, 301-312.

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving Resource
Efficiency at Scale. SIGARCH Comput. Archit. News 43, 3S (June 2015),
450-462. https://doi.org/10.1145/2872887.2749475

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for
the Cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (Houston, Texas, USA) (ASPLOS ’13). ACM, New York, NY,
USA, 461-472. https://doi.org/10.1145/2451116.2451167

Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Net-
work Stack Specialization for Performance. In Proceedings of the 2014
ACM Conference on SIGCOMM (Chicago, Illinois, USA) (SIGCOMM ’14).
ACM, New York, NY, USA, 175-186. https://doi.org/10.1145/2619239.
2626311

David Meisner, Brian T. Gold, and Thomas F. Wenisch. 2009. PowerNap:
Eliminating Server Idle Power. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems (Washington, DC, USA) (ASPLOS XIV). Association
for Computing Machinery, New York, NY, USA, 205-216. https://doi.
org/10.1145/1508244.1508269

David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-
Dietrich Weber, and Thomas F. Wenisch. 2011. Power Management of
Online Data-Intensive Services. In Proceedings of the 38th Annual In-
ternational Symposium on Computer Architecture (San Jose, California,
USA) (ISCA ’11). Association for Computing Machinery, New York,
NY, USA, 319-330. https://doi.org/10.1145/2000064.2000103

David Meisner and Thomas F. Wenisch. 2012. DreamWeaver: Ar-
chitectural Support for Deep Sleep. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (London, England, UK) (ASPLOS XVII).
Association for Computing Machinery, New York, NY, USA, 313-324.
https://doi.org/10.1145/2150976.2151009

Mellanox. [n.d.]. https://community.mellanox.com/s/article/
understanding-interrupt-moderation.

T. Mudge. 2001. Power: a first-class architectural design constraint.
Computer 34, 4 (2001), 52-58. https://doi.org/10.1109/2.917539

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-Sensitive Datacenter Workloads. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation
(Boston, MA, USA) (NSDI'19). USENIX Association, USA, 361-377.
Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T.
Morris. 2012. Improving Network Connection Locality on Multi-
core Systems. In Proceedings of the 7th ACM European Conference
on Computer Systems (Bern, Switzerland) (EuroSys ’'12). Association
for Computing Machinery, New York, NY, USA, 337-350. https:
//doi.org/10.1145/2168836.2168870

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2015. Arrakis:
The Operating System Is the Control Plane. ACM Trans. Comput. Syst.
33, 4, Article 11 (Nov. 2015), 30 pages. https://doi.org/10.1145/2812806
P. Petoumenos, L. Mukhanov, Z. Wang, H. Leather, and D. S. Nikolopou-
los. 2015. Power Capping: What Works, What Does Not. In 2015 IEEE
21st International Conference on Parallel and Distributed Systems (IC-
PADS). 525-534. https://doi.org/10.1109/ICPADS.2015.72

ploty. [n.d.]. Dash Overview. https://plotly.com/dash/.

George Prekas. 2017. https://github.com/ix-project/servers/tree/
master.

George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-Scale Networked Tasks.

15

[75]

[76]

(77

[78]

[79]

[80]

[81]

(82]

[83]

[84]

[85]

[86]

[87]

In Proceedings of the 26th Symposium on Operating Systems Principles
(Shanghai, China) (SOSP ’17). Association for Computing Machinery,
New York, NY, USA, 325-341. https://doi.org/10.1145/3132747.3132780
George Prekas, Mia Primorac, Adam Belay, Christos Kozyrakis, and
Edouard Bugnion. 2015. Energy Proportionality and Workload Con-
solidation for Latency-Critical Applications. In Proceedings of the
Sixth ACM Symposium on Cloud Computing (Kohala Coast, Hawaii)
(SoCC ’15). Association for Computing Machinery, New York, NY, USA,
342-355. https://doi.org/10.1145/2806777.2806848

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. 2018. Arachne: Core-Aware Thread Management. In 13th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18). USENIX Association, Carlsbad, CA, 145-160. https:
//www.usenix.org/conference/osdi18/presentation/qin

Rafael J. Wysocki. [n.d.]. CPU Idle Time Management. https://www.
kernel.org/doc/html/v5.0/admin-guide/pm/cpuidle.html.

Rajesh Nishtala and Hans Fugal and Steven Grimm and Marc
Kwiatkowski and Herman Lee and Harry C. Li and Ryan McElroy
and Mike Paleczny and Daniel Peek and Paul Saab and David Stafford
and Tony Tung and Venkateshwaran Venkataramani. 2013. Scaling
Memcache at Facebook. In Presented as part of the 10th USENLX Sym-
posium on Networked Systems Design and Implementation (NSDI 13).
USENIX, Lombard, IL, 385-398. https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/nishtala

Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drep-
per, Richard Jones, Orran Krieger, Renato Mancuso, and Larry Wood-
man. 2019. Unikernels: The Next Stage of Linux’s Dominance. In
Proceedings of the Workshop on Hot Topics in Operating Systems (Berti-
noro, Italy) (HotOS ’19). Association for Computing Machinery, New
York, NY, USA, 7-13. https://doi.org/10.1145/3317550.3321445
Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega,
Michael Stumm, and Ding Yuan. 2019. An Analysis of Performance Evo-
lution of Linux’s Core Operations. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP °19). Association for Computing Machinery, New York, NY, USA,
554-569. https://doi.org/10.1145/3341301.3359640

Hiroshi Sasaki, Satoshi Imamura, and Koji Inoue. 2013. Coordinated
Power-Performance Optimization in Manycores. In Proceedings of the
22nd International Conference on Parallel Architectures and Compilation
Techniques (Edinburgh, Scotland, UK) (PACT °13). IEEE Press, 51-62.
Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2016. EbbRT: A Framework for Building Per-
Application Library Operating Systems. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, GA, 671-688. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/schatzberg

Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. 2006.
Open versus Closed: A Cautionary Tale. In Proceedings of the 3rd
Conference on Networked Systems Design and Implementation - Volume
3 (San Jose, CA) (NSDI'06). USENIX Association, USA, 18.

Quinn O Snell, Armin R Mikler, and John L Gustafson. 1996. Netpipe:
A Network Protocol Independent Performance Evaluator. In IASTED
International Conference on Intelligent Information Management and
Systems.

V. Spiliopoulos, S. Kaxiras, and G. Keramidas. 2011. Green Governors:
A Framework for Continuously Adaptive DVFS. In Proceedings of the
2011 International Green Computing Conference and Workshops (IGCC
’11). IEEE Computer Society, USA, 1-8. https://doi.org/10.1109/IGCC.
2011.6008552

The Linux Foundation. [n.d.]. napi. https://wiki.linuxfoundation.org/
networking/napi.

Niraj Tolia, Zhikui Wang, Manish Marwah, Cullen Bash, Parthasarathy
Ranganathan, and Xiaoyun Zhu. 2008. Delivering Energy Proportional-
ity with Non Energy-Proportional Systems: Optimizing the Ensemble.

https://doi.org/10.1145/2872887.2749475
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/1508244.1508269
https://doi.org/10.1145/1508244.1508269
https://doi.org/10.1145/2000064.2000103
https://doi.org/10.1145/2150976.2151009
https://community.mellanox.com/s/article/understanding-interrupt-moderation
https://community.mellanox.com/s/article/understanding-interrupt-moderation
https://doi.org/10.1109/2.917539
https://doi.org/10.1145/2168836.2168870
https://doi.org/10.1145/2168836.2168870
https://doi.org/10.1145/2812806
https://doi.org/10.1109/ICPADS.2015.72
https://plotly.com/dash/
https://github.com/ix-project/servers/tree/master
https://github.com/ix-project/servers/tree/master
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/2806777.2806848
https://www.usenix.org/conference/osdi18/presentation/qin
https://www.usenix.org/conference/osdi18/presentation/qin
https://www.kernel.org/doc/html/v5.0/admin-guide/pm/cpuidle.html
https://www.kernel.org/doc/html/v5.0/admin-guide/pm/cpuidle.html
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://doi.org/10.1145/3317550.3321445
https://doi.org/10.1145/3341301.3359640
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg
https://doi.org/10.1109/IGCC.2011.6008552
https://doi.org/10.1109/IGCC.2011.6008552
https://wiki.linuxfoundation.org/networking/napi
https://wiki.linuxfoundation.org/networking/napi

In Proceedings of the 2008 Conference on Power Aware Computing and
Systems (San Diego, California) (HotPower’08). USENIX Association,
USA, 2.

Niraj Tolia, Zhikui Wang, Manish Marwah, Cullen Bash,
Parthasarathy Ranganathan, and Xiaoyun Zhu. 2008. Deliv-
ering Energy Proportionality with Non Energy-Proportional
Systems—Optimizing the Ensemble. In Workshop on Power Aware
Computing and Systems (HotPower 08). USENIX Association,
San Diego, CA. https://www.usenix.org/conference/hotpower-
08/delivering-energy-proportionality-non-energy-proportional-
systems{\T 1\textemdash}optimizing

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and
Samuel Madden. 2013. Speedy Transactions in Multicore In-Memory
Databases. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13).
Association for Computing Machinery, New York, NY, USA, 18-32.
https://doi.org/10.1145/2517349.2522713

Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan, and T. N. Vi-
jaykumar. 2015. TimeTrader: Exploiting Latency Tail to Save Datacen-
ter Energy for Online Search. In Proceedings of the 48th International
Symposium on Microarchitecture (Waikiki, Hawaii) (MICRO-48). As-
sociation for Computing Machinery, New York, NY, USA, 585-597.
https://doi.org/10.1145/2830772.2830779

Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architec-
ture for Well-Conditioned, Scalable Internet Services. SIGOPS Oper.
Syst. Rev. 35, 5 (Oct. 2001), 230-243. https://doi.org/10.1145/502059.
502057

Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun
Jin, Sanjeev Kumar, Bin Li, Justin Meza, and Yee Jiun Song. 2016. Dy-
namo: Facebook’s Data Center-wide Power Management System. In
Proceedings of the 43rd International Symposium on Computer Architec-
ture (Seoul, Republic of Korea) (ISCA ’16). IEEE Press, Piscataway, NJ,
USA, 469-480. https://doi.org/10.1109/ISCA.2016.48

Xin Zhan, Reza Azimi, Svilen Kanev, David Brooks, and Sherief Reda.
2017. CARB: A C-State Power Management Arbiter for Latency-
Critical Workloads. IEEE Computer Architecture Letters 16, 1 (2017),
6-9. https://doi.org/10.1109/LCA.2016.2537802

Huazhe Zhang and H Hoffman. 2015. A Quantitative Evaluation of
the RAPL Power Control System. Feedback Computing (2015).

(88

[

89

—

[90

[t

[91

—

[92

—

[93

—_

[94

=

A Mathematical Framework

A byproduct of our detailed analysis via this wealth of data
collected is that we have begun to create a useful framework
for analyzing and exploring energy and performance impacts
accounting for OS behavior. We believe this framework will
be used as a backbone towards more automated optimiza-
tion of hardware and OS settings. In this section we briefly
summarize our work in using our request time-line break-
down (Figure 1) to develop a mathematical framework that
can be used to explain and explore software and hardware
effects. In particular, we show how we model an open loop
setting, with an arrival rate of A, and explore the impacts of
changes in the instruction path length and composition. A
more detailed discussion of the framework and how it can
be used can be found in Appendix B.

Assuming a setting where the service time is less than or
equal to the time between two requests, we define:

1
Ot = tdetect + tosreq + tapp + tidlepolicy + tq =7

16

Ot = time between the arrivals of two consecutive requests
and the remaining terms directly reflect the time-line com-
ponents.

We group together the three terms that have a clear DVFS
dependence and define tyork as tosreq + tapp + Lidlepolicy- EX-
cluding detection and any quiescent time, defining #jatency
as fgetect + twork for the total service time or latency for a
request.

Similarly the total energy consumed during the inter-
arrival time, 6t is:

E = Pietecttdetect + Pwork [tosreq + tapp + tidlepolicy] + Pq tq ‘ =

Pyetecttdetect + Pworkbwork + Pq tq

An important aspect of our model is our physically mo-
tivated abstraction of a processor’s DVFS setting, A. While
it is a single value we model its ability to have an indepen-
dent impact on time (as a possible function of frequency)
and power (as a possible function of voltage and frequency).
Specifically, we posit tyork and Pyork as follows:

twork = AAllvﬁ and Pyork = BA2+ﬁ

where A, B are constants of proportionality, N; = the
total number of instructions and «, f are real-valued con-
stants that describe the dependence on DVFS. This allows
us, through a and f, to explore effects in which different
instruction mixes of the software, are affected in different
ways with respect to time and energy by DVEFS settings.

As an example of the use of the framework to generate
simulated plots similar to figures shown above, in figure 10,
plot a) shows that when instructions are less affected by
frequency one expects to see a vertical structure. Plots b)
and c) show that as the paths are composed of instructions
that are more frequency sensitive DVFS changes result in a
more curved structure in the energy vs latency. As expected
slowing the instructions starts to affect latency in these in-
struction mixes. Additionally in all three plots one sees that
delaying interrupts via ITR, for a busy fraction, increases la-
tency with not much improvement in energy. Remembering
that for this configuration deep sleep has been configured to
use zero energy. In section 5.2.1 we will examine a scenario
that arises in practice that displays similar behavior.

https://www.usenix.org/conference/hotpower-08/delivering-energy-proportionality-non-energy-proportional-systems{\T1\textemdash }optimizing
https://www.usenix.org/conference/hotpower-08/delivering-energy-proportionality-non-energy-proportional-systems{\T1\textemdash }optimizing
https://www.usenix.org/conference/hotpower-08/delivering-energy-proportionality-non-energy-proportional-systems{\T1\textemdash }optimizing
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2830772.2830779
https://doi.org/10.1145/502059.502057
https://doi.org/10.1145/502059.502057
https://doi.org/10.1109/ISCA.2016.48
https://doi.org/10.1109/LCA.2016.2537802

(a) No time sensitivity, power sensitive (alpha=-1, beta=-1)
df=%time spent in detection
wf=%time spent doing work

& df=5%, wf=30% - -
0.0035 df=15%, wf=30%
= df=5%, wi=70% - -
15%, wi=709
oapzp | * df=15%, wr=70% . -
- -
0.0025
- -
.
£ 00020 . -
2
&
- - -
0.0015 P
- - -
-
0.0010 -
- - -
-
0.0005 - - -
-
-
10 12 14 15 18 20
Latency le-5
(b) Small time sensitivity, power sensitive (alpha=-0.97, beta=-
df=%time spent in detection
wf=%time spent doing work
000351 o gr=5m, wi=30% - .
df=15%, wi=30%
ooz { *® df=5% wi=70% - -
& df=15%, wi=70%
- -
0.0025 - -
- -
> 0.0020
g - -
2
&
0.0015 - - -
-
- - -
-
00010{ o . .
-
-
0.0005 - - -
-
-
08 10 12 12 16 13 20
Latency 1le-5
(c) Larger time sensitivity, power sensitive (alpha=-0.5, beta=-1
df=%time spent in detection
wf=%time spent doing work
0.0012
- - ® df=5%, wi=30%
- - df=15%, wi=30%
- - & df=5%, wf=T70%
0.0010 - o & df=15%, wf=70%
- -
- -
0.0008 - -
=
=3 - -
o
i
0.0006 - -
- -
-
-
-
0.0004 -
-
-
-
-
0.0002 ¢
050 075 100 125 150 175 200
Latency le-5

Figure 10. Simulated Plots. Note: The X and Y axis values
are not realistic values but rather simulated values.

B Appendix: Mathematical Framework

Under the assumption that the various time-segments in
figure 1 don’t overlap, one can break down a full cycle from
one request to another into disjoint time-intervals:

(1)

Ot = tdetect + tosreq + tapp + tidlepolicy + tq = Z

17

where, 6t = time between the arrivals of two consecutive
requests. The other terms represent the various intervals in
figure 1.

Each term is treated as a deterministic and fixed quan-
tity (dependent on workload, hardware, OS, parameters) as
opposed to a random variable following some underlying
probability distribution. This is sufficient for a qualitative
treatment but a full quantitative treatment would treat these
terms as part of a probabilistic graphical model.

Note that the interval 8t is the interarrival time which is
given by the reciprocal of the arrival rate (in queries/requests
per unit time), A. We will work in the regime where A is low
enough that each request is processed before the next re-
quest arrives. While the treatment above is for the open-loop
setting, this restriction also applies to the closed loop set-
ting where, by construction, the interarrival interval always
exceeds the time spent processing a request.

To map this timeline decomposition to our experimental
setup, we can group together some of the terms to define:

twork = tosreq + tapp + tidlepolicy

tlatency = fwork t Idetect
to get:

Ot = tgetect + twork + tq = tlatency +iq
Intuitively, tyork is the time spent on processing the re-
quest outside the detection phase and outside any quiescent
time, t4, and fiatency is the time spent both in the detection
phase and on processing for a given request.
Since the total time, 6t is fixed (=%), this implies that the
quiescent time is,

+
lq = i — (twork *+ tdetect)

where [x]* = max(x,0) i.e. [x]* is the positive part of x.

In other words, if the arrival rate A is small enough, there
is an opportunity for the processor to enter a quiescent state
(tq > 0) but as the arrival rate increases, the time processing
the request, tyork exceeds the inter-arrival gap leading to
requests accumulating in the queue.

As stated above, these relationships also applies to the
closed-loop case with the additional constraint that the ar-
rival rate and thus the interarrival gap is no longer indepen-
dent of tyork-

Given this time decomposition, one can compute the total
energy consumed for each request as follows:

E = Pyetectldetect + Pwork [tosref + tapp + tidlepolicy] + Pq zLq (2)

The assumption is that there are three power regimes, one
each for the detection phase, the work phase and the quies-
cent phase, respectively.

For the open-loop case, since we are studying energy, E vs
latency, tatency plots for various itr (t4ezec;) and DVES values,
we need to posit the dependence of these terms on DVFS.
Suppose the workload needs N; instructions. One would
expect tyork to scale as:

N;
f

where f = CPU frequency. Of course, there might be de-
viations from this behavior and one can posit a power law
dependence,

twork &

N
twork = Alea’

where A is a constant of proportionality and &’ is an ar-
bitrary parameter. ¢’ = 0 would fit the baseline case where
time scales inversely with frequency. Since we control DVFS

and not frequency directly, we can change this to

N;i
A1+a

twork = A

where A = the chosen DVFS value and « is some scaling
power that can be inferred from data. The other time values
don’t depend on DVEFS in this simple model (although that
assumption can be added in a straightforward way).

The total energy consumed depends on various power
values which in turn can depend on DVFS. Here, we posit
that Pyox has a power law dependence on DVFS, A. To
motivate this, the power consumed by a processor scales as:

P V2f
where V = the operating voltage and f = CPU frequency.
DVEFS scales both voltage and frequency but not necessar-
ily in a linear way. The general power law assumption is
parameterized by a second parameter, f3, as follows:

Pyork = BA2+ﬁ
where B is a constant of proportionality and f can be unre-
stricted and is meant to be inferred from the data. Depending
on the exact setup, it is possible that Pgetect also scales with
DVFS and in that case, we will set Pgetect = Pwork-
At a qualitative level, the two relationships,

Ot = tgetect + twork [= e

i

E = Pgetecttdetect + Pwork [= BA2+ﬁ] twork [= W

1+ Pty (4)

with the requirements that 5t = % or equivalently, t; =
[% — [twork + tlatency)] " can be used to plot the behavior of
energy consumed vs time (latency, total run-time) for various
values of @ and S.

We can plot some energy, E vs latency, tjatency CUrves nu-
merically for the case:

18

Pietect = Pq =0w

Pyork = Ptatic + PtextminA2+ﬁ =10W + 20WA2+ﬁ

For a fixed interarrival time, 8¢, we assign a fraction fgetect
to the detection phase and a maximum fraction f™ to the
work
work to get:

Hatency = tdetect + twork
max
work

= fdetectat + Al+a

max
work

A1+zz

zLlaten(:y

ot

= ﬁletect +

and

E = Pyetectldetect + Pworktwork + Pq tq

= Pyorktwork

‘max
work)
A1+

= (10W + 20WA*P) (fierect St + (6)

max
work)

A1+a

1Wét

For various choices of detection loads (0 < fietect < 1),
maximal work loads (0 < f*% < 1), time-scaling (), power-
scaling (), we can plot energy (E) vs latency (tjatency) curves
as DVFS (A) varies. An example is shown in figure 11. Power
sensitivity to DVFS, § increases across columns (left to right)
and time sensitivity to DVFS, « increases across rows (top
to bottom).

While these qualitative plots indicate the ability of the
model to replicate curves observed in real data, a natural
next step would be to perform fits to infer the values of the
model parameters including « and f and reason about them
in terms of both the workload application and the underlying
OS structure.

— = (10 + 20A%*) (fieteet +

pha = -1, beta = -1
time spent in detection

wf=%time spent doing work

alpha = -1, beta
df=S6time spent in detection
wf=%time spent doing work

alpha
-

, beta
time spent in ‘etaction

wf=%time spent doing work

alpha = -1, beta = 0.5
df=stime spent in detection
wf=%time spent doing work

alpha = -1, beta = 1
df=satime spent in detection
wf=%time spent doing work

alpha = -1, 2
df=tatime spent in detection
wF=%time spent doing work

- . - . 0035 { o ar=s%, wi=30% . B PEEE—— . . 035 B . 35 B .
00035 . . . x| ® oS wis0x
0010 . . won] * o st wi=10% 030 30
00030 o am15% wi=70%
- . 0008 . . 0025 008 025 . . 25
00025 . . . -
= - . . - . 5 0020 = 006 . . 5020 20
§ oo . | goos N g . . § § . - g
“ & . - G015 @ - & - - . - G015 e . G15]e . . -
00015{ & N - . - - - - 004
H H o004 . . . - . . . -
. - - . . - 00101 o - . - 010 ® - 10] e .
H H : : -
om0 { & H . . - . . .
- . . 00021 * 002 e - . - - .
. . 0005{ * . N N 005 = . . . 05 . -
00005 : . . B H M N . . . N M . N
: 0000 H c wo{d & I wo{d ¥ i ooo{d i o0 i i
W 12 14 16 18 20 0 12 14 16 18 20 To 12 18 16 18 20 To 12 1 16 18 20 To 12 14 15 18 20
Latency 1e-5 Latency 1e-s Latency 1o Latency 1e-s Latency 15
alpha = -0.5, beta = -1 alpha = -0.5, beta = alpha = -0.5, beta = 0.5 alpha =-0.5, beta = 1 alpha = -0.5, beta = 2
df=9%time spent in detection df=%time spent in detection df= mmespem in dets df=%time spent in detection df=%time spent in detection
wf=9%time spent doing work wf=%time spent doing work wf=9%time spent doing work wf=%time spent doing work wf=%time spent doing work
oo012
.. . 00035 . . 0035 . e S . . .
‘ ° N 010 N 10 N
P . 0010 N N
00010 .« . . 00030 . . o030 L. - :
. . P
08
- - 0.0025 0008 - - 0025 008 . .
00008 P .
o« . 0020 .- .
& . e goo 5 o0 B .. gooe Foe
& « . & & Soos{e e & & e "
00006
R 00015 0008 « e & s 004 04
T = 000{ o & et e .
U 00010 PO B]
EY 002 02 .
. 0002 os] & o e e
. el 0.0005 . . AN o e . -
. . oy e < . s . -
00002 P 0000 0000 . e . . . 000 . . 00 R
%0 ofs 160 135 130 175 200 of0 ofs 160 135 1%0 195 200 of0 ofs 100 155 150 175 200 %0 075 100 135 130 175 200 of0 ofs 100 135 130 175 200 ofo oFs 160 135 130 175 200
15 Latency 15 Latency 1e-s Latency 15 Is Latency 15
alpha = 0, beta = - alpha = 0, bet alpha = 0, beta = alpha = 0, beta = 0.5 alpha = 0, beta = 1 alpha = 0, beta =
time spent in detection time spent in detection time spent in detection df=%time spent in detection df=%time spent in detection df=%time spent in detection
wf=%time spent doing work wf=%time spent doing work wf=%time spent doing work wf=9%time spent doing work wf=9%time spent doing work wF=%time spent doing work
. . . . - df 0.0035 - - - - 0035 - . 035 - -
P .
oooose 0010
00010 . 00030 . . o030 030
00005 . e . . . o EaswiTon . .
S Lo
0008 . - 0025 025 - -
. . 00025 | e e
0.00040 P 0.0008 - . ¢ ¢
= -~ = .. = .. > .- » 0020 5. 020
& oooo3s g gooo0 & o008 g g . .
H g . 2 LY g . H .. H
& & & & & So15]a
000030 00006, T 00015 { @ e, o - gose =
- P 0004{e & o . e IR
o« . e e . . 0010 o 010
0a002s : % oo0w0] ¢ = . e e T . . e .
o« e 00004{ g % DR P . .
-« 5 o002 . . e e .
000020 A . e . ooos{ 4 005 2 .
oaoois | #* #* 00002 . . . e 0000 . . o000 . . . 000] e et i e . .
035 oo 075 100 135 130 175 200 025 030 075 100 135 150 175 20 025 030 075 100 135 130 175 240 of5 oko ofs 100 135 150 175 200 035 obo ofs 160 135 150 175 200 o3 0bo 075 160 135 1%0 175 200
1e-5 Latency s Latency s Latency 1e-s Tes mmy 1e-5
alpha = 0.5, beta = -1 alpha = 0.5, beta = alpha = 0.5, beta = alpha = 0.5, beta = alpha = 0.5, beta = alpha = 05, beta =
df=%time spent in detection ime spent in detection ime spent in detection df=3time spent in detection df=%time spent in detection df=%time spent in detection
‘wi=S%time spent doing work wi=S%time spent doing work ‘wi=%time spent doing work wi=%time spent doing work wi=%time spent doing work wF=%time spent doing work
o di=5%, wi=30% 00035 { o o o di=5%, wi=30%) o di=5%, wi=30% .« . o di=5%, wi=30%
00005{ & gi=15% wi=30% 000050 o . - o di=15% wi=30% so0 o di=15%, wi=30% 010 o di=15% wi=30%
. 0ot & e . 50030 . .
- 0.00045. - - - - - . .
o000 . .
- 00025 - - 0.008 . - 008
000040 P 00008{ o
o2 . . P
& 00003 - . 5000035 { * #* 5 500020 5 0006 5 005
H H H .. H .. H . H
- e 000030 00008 . e 00015 { = o . te
. . N 0004{® s o 004 .
oo002 .. H e .
o0o0zs ; el 8% oo s = e e .
- o|e Wi)¢ H * Y . - - . 002 .
ocoor| %o 000020 - di15% wr=30% RS v ooe2 . . e
, i « o - W=T0% " 0.0005 o e .« . e . R
. T . . o
oooons | & o 5% wi=T0% 00002 o . . . 0000 o . 000 et e, . .
035 030 075 100 135 1%0 175 200 035 030 o075 100 135 1%0 175 200 o3 odo o7s 100 135 150 175 200 025 030 075 160 135 L%0 175 200 025 050 075 100 135 1%0 175 200 025 050 075 100 135 1%0 175 200
Latency 1e-s Latency 1e-s Latency 1e-s Latency 1e-s Latency 1e-s Latenc 1e-5
2ipha =1, beta alpha = 1, beta alpha = 1, beta = 0 alpha = 1, beta = 0.5 alpha = 1, beta alpha = 1, bet
time spent in detection ime spent in detection ime spent in detection df=%time spent in detection df=%time spent in dste(lmn df=%time spent in dete(lmn
wi=S%time spent doing work wi=S%time spent doing work ‘wi=S%time spent doing work wi=Y%time spent doing work wi=Y%time spent doing work wF=Ytime spent doing work
. =%, wi=30% . . di=5%, wi=30% . . . D) o dr5%, Wm0 oass e« . di=5%, wi=30% o e« o di=S%, wi=30%
000051 & g=15%. 0% 00005 df %, 0% 000050 . . ® df=15%, wf=30% - df=15%, 0% . df=15%, 0%
® dt=5%, wi=70% ® di=5%,wi=10% 0000{ & @ @ dt=5%, wi=70% 00030 . ® df=5% wi=70% 0,030 ® d=5%, Wi=70%
. dr=15%, wi=T0% o di=15% wi=T0% 000045 . . o di=15% wi=T0% . . dr=15% wr=70% . o di=15% wi=T0%
00008 00004 B
000040 000251 o - o0z
. . 00008 { o @ . .
5 = 5 et 5 5 . 0020
5 00003 & 00003 . e 5 000035 | #* & 5 . 5 00020 g
H H H & . . & .. H :
s e e L. 200030 00005 : . vons] o o, oas .
00002 . ° e 0010 N
00001 - - - . CEC IR .
P 000020 - s 0005
00001 : : 00005 “ .. i
PR . P o e .s . e
0000 000015 20002 . . . 0000 .
035 0%0 075 100 135 150 195 200 035 030 075 100 1% 150 175 200 025 030 075 100 135 130 175 200 025 030 075 100 135 130 175 200 035 030 o075 100 135 150 175 200
Latency = nc Latency - Latency 1e-s Latency =
alpha alpha = 2,) alpha = 2, beta = alpha = 2, beta = 2
df=%time spent in detection df=%time spent in detection df Ytime spem in detection
wf=%time spent doing work wf=%time spent doing work e spent doing work
- . o di=5% wi=30% - . . 00035{ @ = o di=5%, wi=30%
000051 o 0.0005 00005 4 o 00005 { & gf=15%, wi=30% 000050 o di=15%, wi=30%
- - 00030 .
. . 000045 . o =
00008 00004 00004 oo00e
000040 000251 &«
. . .
5 0000 5 o0 5 00003 500003 Zooooss | @ e 5 00020
H . . H - H . H & N
.. . . 000030 oons{s s
00002 0.0002 0.0002 - - - -
ooz { ¢ st
. e . .
. . . I oo00zs .. 00010 -
S I L PP i.i. : 5 .
- - PR i 000011 o o . 00005 B o« .
o | &4 oo | § € sao0 ii oscass : - ..

025 050 075 100 125 150 175 200
Latency 1e-5

025 030 075 100 125 150 175 200
Latency 1e-5

025 050 075 100 125 150 175 200
Latency 1e-5

025 050 075 100 125 150 175 200
Latency 1e-5

025 050 075 100 125 150 175 200
Latency 1e-5

025 050 075 100 125 150 175 200
Latency P

Figure 11. Simulated Energy vs Latency Curves for Open-Loop Workloads. Power sensitivity to DVFS increase across columns
and time/latency sensitivity to DVFS increases across rows

19

	Abstract
	1 Introduction
	2 Processing Break Down
	2.1 Quiescent
	2.2 OS Request Detection
	2.3 OS Request Processing

	3 Performance and Energy
	3.1 Interactions with Slowing Down the processor
	3.2 Interactions with Delaying Interrupts
	3.3 Interaction with Specializing OS Paths

	4 Experiment Setup
	4.1 Hardware Platform
	4.2 OS Software
	4.3 Per-Interrupt Log Collection and Visualization

	5 Experimental Analysis
	5.1 Closed Loop Workloads
	5.2 Open Loop Workloads

	6 Related Work
	7 Conclusion
	References
	A Mathematical Framework
	B Appendix: Mathematical Framework

