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ABSTRACT

Is there "fat" (overheads) in cloud computing infrastructure
software that can be trimmed? Would doing so help amelio-
rate the need for frequent hardware refreshes and extend the
life of existing hardware? In this paper, we demonstrate that,
indeed, there is "fat" that can be trimmed by using specialized
OS-based software stacks. Doing so can allow decade-old
computers to be used for critical cloud infrastructure services,
potentially yielding 3x improvements in efficiency compared
to standard software stacks on newer hardware. The impli-
cations of these results raise the possibility of exploiting
OS optimizations to reduce server hardware obsolescence.
Further, it suggests the importance of addressing the key
portability challenges of specialized OS stacks.
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1 INTRODUCTION

In this paper, we discuss the opportunity to breathe new
life into old hardware by using specialized software for data
center-scale applications. Doing so can potentially reduce
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cloud computing providers’ embodied and operational car-
bon footprints. However, to realize this potential, we must
address some challenges and open problems.

We present data suggesting that using specialized soft-
ware stacks for dedicated services can enable performance
improvements and energy savings by over 3X on older hard-
ware. These improvements make it viable to use older hard-
ware for performance critical services and help reduce hard-
ware obsolescence by prolonging the life of purchase hard-
ware within data centers. A data center operator can then
squeeze more value out of their investments by judiciously
using their modern higher-performance hardware.

1.1 Background

A hallmark of modern cloud computing are the fleets of
servers that run core infrastructure services such as in-
memory caches and databases [17]. While not glamorous,
these services are critical in ensuring that hot data used
on every web request resides in memory and thus can be
efficiently accessed and computed on.

For example, serving a single page involves many inter-
nal transactions accessing static and dynamic data such as
images, text, and generating personalized content like stats,
feeds, and ads. To ensure a fast response, this initial request
is split into many smaller parallel transactions to multiple
distributed servers. Each transaction must then complete
promptly to meet the provider’s service-level agreement
(SLA), an example is that 99% of requests are satisfied within
X milliseconds or microseconds. To meet these stringent la-
tency requirements, the aforementioned in-memory services
are often scaled horizontally in dedicated nodes, and run on
hundreds of clusters representing hundreds of thousands of
cores and growing [46, 49].

Ultimately, to meet these SLA targets while keeping the
development and maintenance burden of these web pages
reasonable, developers rely on generic reusable software
components, which in turn run on the generic, widely used
operating systems (OSes), such as Linux, that they know
and are familiar with. While it is easy and natural to de-
ploy on Linux, there is also a broad understanding in the
systems community that specialization improves overall effi-
ciency. Prior research has demonstrated that when running
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a single primary application, a specialized OS tailored to the
application’s needs, can yield orders of magnitude better per-
formance [4, 8, 10, 15, 22, 24-26, 29-34, 36, 38—-40, 43, 48, 51],
however, we find there has been limited works to explore
their performance and power efficiency [37]/carbon trade-
offs.

Therefore in this paper, we present preliminary results
from a novel comparative performance and carbon study of
two distinct OSes, Linux and a specialized library OS stack,
EbbRT [43], on different hardware generations. We demon-
strate that a baremetal EbbRT deployed on older process
node technology (Q3’14) can yield significant performance
and energy wins over newer hardware (Q2’21) running Linux.
Further, our results also suggest that with the ever-increasing
demands for cloud services, specialized OS stacks can help
abate the demand to replace/upgrade older hardware.

Obviously, the use of specialized OSes need not be re-
stricted to older hardware given prior work demonstrating
how newer hardware features are used for significant per-
formance gains [10, 15, 16, 25, 32, 36, 51]. However, in this
work we restrict EbbRT to run on older hardware in order to:
1) motivate its adoption to address server hardware obsoles-
cence while improving both performance and power/carbon
efficiency, 2) highlight the portability challenges to using li-
brary OSes such as EbbRT as it would’ve required significant
engineering effort (i.e. developing and maintaining device
drivers) to work with new hardware, 3) and help pave a way
forward of how one can marry the portability of Linux with
the advantages of these specialized stacks in §4.

The remainder of this paper is organized as follows. In
§2, we present results from our study on three generations
of Intel server-class nodes. We then discuss the results with
respect to carbon emissions in §3. In §4, we conclude with
a discussion of potential implications and future work that
our results suggest.

2 STUDY
2.1 Software Stacks

Our study aims to expose the performance and energy con-
sumption of generic versus specialized software stacks. Each
stack is composed of an OS and a primary application. We
use two applications that prior work has used to evaluate
in-memory services: 1) memcached [8, 14, 16, 32, 38, 43] and
a transactional database, silo [10, 36].

2.1.1 OSes. We explore the impact of software stack spe-
cialization by comparing a commodity OS, Linux, commonly
used by cloud providers and a research library OS, EbbRT,
designed for event-driven network-oriented applications.
These OSes represent two extremes in design: Linux is a
general-purpose OS with tens of millions of lines of code
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supporting a wide range of hardware and applications, and
EbbRT is a specialized OS with about 20K lines of code that
supports a single application on a specific hardware platform.

Linux uses the default Ubuntu 22 images available on
CloudLab [13], which runs the Linux 5.15 kernel. To ensure
a fair comparison between the OSes, we optimize Linux
by using the performance governor!, fixing packet receive
interrupts to specific cores, and enabling large-page support.
We measure CPU package power and instruction counts
using Linux perf[18], which employs Intel RAPL [9] for
energy measurements, and has been independently validated
by other researchers [11, 27, 50].

EbbRT is a library OS/unikernel that was developed
almost a decade ago, whose advantages with respect to
KVM virtualized performance (over 2X compared to Linux)
was previously published [43]. Shortly after, we developed
an EbbRT device driver for the Intel 10 GbE NIC from
scratch [12], which permits EbbRT to run non-virtualized on
bare-metal hardware with this older NIC. Like other special-
ized OSs [4, 8, 10, 30, 32, 34, 36, 38, 48, 51], EbbRT features a
small optimized code base with custom event-driven inter-
faces and components designed to eliminate the overheads
associated with a general-purpose OSes. Optimized applica-
tions are written to these interfaces, compiled with the kernel
code, and executed within the single supervisor-privileged
domain.

Unfortunately, these specialized OSes have seen little adop-
tion due to the difficulty of maintaining and forward porting
them to new hardware and software. To our knowledge, be-
yond UniKraft[28], there are few, if any, non-active research
uni-kernels. Given our goal of evaluating, in the extreme,
what benefits OS specialization can have concerning breath-
ing new life into older hardware, we use bare-metal EbbRT,
which aggressively uses multi-threading, large-pages, and
has a version of both memcached and silo ported to it.

2.1.2 Applications. We use two standard applications to
evaluate our OS stacks.

memecached: This widely used OS-demanding caching
application benefits from specialization techniques like ker-
nel bypass to improve performance [8, 14, 16, 32, 38, 43]. In
our study, we use the Ubuntu-provided memcached-1.6.26
for the Linux stack, while EbbRT uses a re-implemented ver-
sion tailored to its native interfaces, supporting the standard
memcached binary protocol.

IWe also experimented with Linux’s dynamic ondemand governor, which
showed reduced overall performance compared to performance mode. For
example, in memcached on Linux-Node3, ondemand reached only 37% of the
peak throughput of performance. However, at lighter RPS rates, ondemand
used up to 43% less power than performance. Ultimately, EbbRT consumed
the least power overall, 2.3 times less than ondemand for the same RPS rates.
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Name CPU Node | Release | Threads | TDP (W) | Idle (W) NIC DDR4 RAM SSD

Client || Intel Xeon Silver 4314 | 10 nm | Q2’21 32 135 45 Mellanox 40GbE 128GB 960 GB
Node1 Intel E5-2630 v3 22nm | Q3’14 2x 16 2x 85 16 Intel 82599ES 10GbE 128GB 480 GB
Node2 || Intel Xeon Silver 4114 | 14 nm | Q3’17 2x20 2x135 47 Intel X710 10GbE 192GB 480 GB
Node3 || Intel Xeon Silver 4314 | 10 nm | Q2’21 2x32 2x 135 89 Mellanox 40GbE 256GB 960 GB

Table 1: Different hardware used in experiments. We used Linux perf [18] to measure its idle power consumption. We have
also validated the idle power number on LibOS for Node1. Note that Node1, Node2, Node3 all have 2 packages in one node.
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Figure 1: Memcached latency, power, and instruction count measures at different RPS rates.
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Figure 2: Silo latency, power, and instruction count measures at different RPS rates.

silo: Cloud services also use systems that support complex
operations on stored data, such as in-memory relational
databases (SQL and No-SQL) [3]. These databases impose
significantly more CPU and memory load per operation than
memcached. Silo [47] is designed to represent this type of
application. We built, from source, a version of silo [35]
with a web front-end for both OSes. Each incoming web
request triggers a set of TPC-C transactions on its in-memory
database component.

2.2 Hardware

Details of the hardware nodes used in the study are in Ta-
ble 1. We set up a cluster of these nodes using CloudLab [13].
The core goal is to compare EbbRT booted on the oldest
CPU technology, Node1 (2014), to Linux on all three CPU
generations: Node1 (2014), Node2 (2017), and Node3 (2021).
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2.3 Methodology

To generate load on the memcached and silo servers, we use
the mutilate [21] tool in order to create load across a total of
1280 connections - this is coordinated by using four of the
Client node type shown in table 1. The load is based on the
representative ETC workload from Facebook [5]. We use a
standard SLA (as used by others [8, 16, 32, 36, 43]) of 99%
latency under 500 us for both applications and we increase
the amount of requests-per-second (RPS) at mean rates until
the server node is saturated where it can no longer meet the
SLA. We run each mean RPS rate for a total of 30 seconds in
order to measure the server node’s power, instruction count,
and the reported 99% latency at the corresponding RPS rate.
Experiments were repeated up to four times, with worst-case
standard deviations of 2.49% from the mean.
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2.4 Performance Results

Fig. 1 and fig. 2 illustrates the overall data from our study.
For each application, we present performance as the load is
increased (fig. 1a and fig. 2a), along with its measured power
consumption (fig. 1b and fig. 2b,) and instruction counts
(fig. 1c and fig. 2c)%.

By enabling both OS stacks to use all available cores on a
hardware node, we can observe how the stacks compare
in terms of their ability to satisfy a particular load (e.g.
throughput in KRPS). The memcached results indicate that
EbbRT-Node1 can satisfy requested loads with considerably
fewer instructions: almost 5X reduction when compared to
Linux-Node1l. This reduction reveals both the "fat" (over-
heads) of the general-purpose OS and the ability of the spe-
cialized OS to trim it.

We note that given the OS-centric nature of memcached,
the instruction counts in fig. 1c reveals more insight into the
ability of EbbRT to squeeze more out of the hardware. While
it is unsurprising that Linux-Node2, and Linux-Node3 re-
quire more instructions given the higher thread count of their
CPUs, EbbRT-Node1 can still achieve a higher peak through-
put (1.75X over Linux-Node3) while using the fewer threads
available on Node1. Furthermore, contrasting the shape of
the curves, one can see that EbbRT’s instruction count scales
linearly with the load. This indicates its ability to use the
threads of the Node1 more efficiently. In contrast, the non-
linearity of the Linux curves shows poorer scalability and
suggests multi-core overheads. Prior works in optimizing
memcached [8, 16, 32, 36, 43] have also remarked on these
scalability issues.

Given that silo is a more compute-intensive application
and that both OS stacks are constructed with the same appli-
cation source, it is harder to see the instruction count differ-
ences in fig. 2c. The raw data reveals that at a query rate of
100 KRPS on Node1, EbbRT requires 22% fewer instructions
compared to Linux. While not as dramatic a difference, elim-
inating this overhead helped contribute to the specialized
OS being able to squeeze out a 2X improvement in the peak
throughput compared to Linux-Node1 and Linux-Node2.
Lastly, we note that the increased number of CPUs and faster
clock speeds of Node3 eventually enable Linux to achieve the
highest peak throughput for silo in our study (1.75X better
than EbbRT-Node1). The following sections examines the
carbon implications of these trade-offs in more detail.

3 CARBON ANALYSIS

In the prior section, we observed that a specialized software
stack can support critical work with fewer instructions, re-
sulting in greater efficiency, higher performance, and lower

Note for figures (b) and (c), we filter out RPS values that violate the SLA
objective.
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CO2 (kg)
CPU | DRAM | SSD | Total
Nodel | 14.2 | 86.9 17.3 | 1184
Node2 | 13.1 | 122.5 17.3 | 152.9
Node3 | 15.1 | 172.5 34.3 | 221.9

Table 2: Embodied carbon calculations.

energy consumption when run on older hardware (a 22nm-
2014 CPU, DRAM, and NIC conforming to a networking
standard defined in 2002 [1]). This data also exposes a form
of software-driven hardware obsolescence that increases e-
waste and carbon. To extrapolate on this observation, we
conduct an analysis below which considers both the embod-
ied and operational carbon of our study.

3.1 Computational Carbon Intensity (CCI)

For this analysis, we use the Computational Carbon Intensity
(CCI) metric [45] as it helps calculate the lifetime CO2 re-
leased per unit of work. Further, CCI captures both embodied
and operational carbon while rewarding the reuse of existing

o (Cp+CoHC
hardware. Roughly, CCI is defined as: Zuss “'Z""e( M+O )
lifetime ps

Cy is the embodied carbon and we use information pro-
vided by ACT [19], to calculate it for the three servers used in
our study in table 23. C¢ is operational carbon and it is calcu-
lated as Cly,iq * E where Cly,;q is the carbon intensity of the
electrical grid and E is energy consumption of the server. We
calculated a Cly;q of 277.3 gCO2/kWh using a New England
resource mix [20]. Cy is networking carbon and is calculated
as Clyrig * fuet * Elner, where fre; is the server’s NIC speed and
ET,.; is energy intensity of networking; we use a published
value of 2.7 pJoules/Byte [6]. We consider the lifetime ops
of each server as the peak rates shown in fig. 1a, fig. 2a sus-
tained across multiple years. CCI does not consider multiple
lifetimes (i.e. repairs/maintenance) as it can be difficult to
get this visibility in old hardware.
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Figure 3: CCI for both workloads. Lower is better.

3We expect the embodied carbon trend to continue to increase as a modern
server, such as those deployed in the Aurora supercomputing cluster (10nm
CPU, deployed 2023) [2], contains an embodied carbon of 732 kg.



3.2 Analysis

Fig. 3 shows the computed CCI for memcached and silo
across both OSes. Similar to [45], we assume Cy; (embodied
carbon) of the oldest server, Node1, is 0. Further, a refur-
bished server such as Node1 [42] can also be purchased for
4X cheaper compared to Node3 [44].

In both memcached and silo, EbbRT-Node1 achieved the
lowest CCI and is typically 2-6X lower compared to Linux.
We find that the peak RPS-per-Watt of EbbRT-Node1 con-
tributed greatly to its lower CCI as well as the carbon savings
from the use of older hardware components (i.e. CPU, NIC,
etc). Further, by sticking with EbbRT-Node1, a provider not
only abates the need to upgrade a memcached server un-
til the request peak rate increases above 2800 KRPS (1.75X
beyond Linux-Node3), but it also can exploit the low CCI
to process each request more efficiently. For silo, though
EbbRT-Nodel cannot reach the peak RPS of Linux-Node3,
its CCI efficiency indicates a provider could choose to scale
horizontally by purchasing from the refurbished market an-
other Node1 hardware instead.

It has been noted that the load on web service’s fluctuate
significantly due to its diurnal patterns [5, 23]; with datacen-
ter service’s often running at low utilization to respond to
bursty behavior [7]. From a carbon perspective, this can sig-
nificantly change the trade-offs concerning hardware refresh
that specialized OSes can help unlock. Node1 (2014) has both
a lower idle power consumption and thermal design power
(TDP)* when compared to Node2 (2017) and Node3 (2021).
For memcached at peak load, Linux-Node3 induced only a
1.33X increase in power when compared to Linux-Node1, at
lighter loads (200 KRPS) we find this actually increased to
over 2.84X. In contrast, using EbbRT-Node1 yields a reduc-
tion of 12% power compared to Linux-Node1 at light loads.
Therefore over a server’s lifetime, we find that the combina-
tion of a specialized stack running on older hardware serves
as better units for horizontal scaling while reducing both
embodied and operational carbon costs.

4 FUTURE DIRECTIONS

Our study illustrates how optimizing the OS can help address
the three R’s of sustainability for cloud providers [19]: 1)
Reduce the demand for new hardware systems, 2) Reuse
older systems for a broader set of roles, and 3) have a path to
utilizing Recycled hardware for modern use cases. However,
there are still some open questions and challenges that must
be addressed.

As mentioned, although there have been significant ef-
fort for over a decade to build specialized OSes; there has
been little real-world deployments of these systems due to

4TDP is a Intel provided metric that represents the average power the
processor dissipates under some predefined high-complexity workload.
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their portability limitations. To reap the potential benefits
that our study suggests, the challenges of porting specialized
OSes deserve more attention. From literature, we find a key
optimization approach taken by these systems is to bypass
traditional kernel paths and co-optimize directly with the
hardware (i.e. NICs) itself; either through in-house imple-
mentations [15, 34, 43] or the use of third-party libraries such
as DPDK [8, 10, 24, 25, 32, 36, 51]. Unfortunately, this limits
its portability as these systems typically require a rewrite or
modification of the original application to take advantage of
systems optimizations. Ideally, one would like to marry the
portability and richness of Linux with specialized OS stacks.

Junction [15] is an example of recent library OS work that
makes kernel-bypass practical by adding compatibility to
run unmodified Linux applications. However, it relies on ad-
vanced hardware features of new data center CPUs and NICs
(as well as a custom mlnx5 driver). Another approach is to
take incremental steps instead where any unmodified appli-
cation, running on Linux, can be the starting point and incre-
mental application and OS co-optimization can be induced
to move its performance and power profile towards special-
ized OSes. Expanding on this, UniKernel Linux (UKL) [41],
introduces a set of Linux kernel configurations that permits
primary application to be compiled into the kernel. When
the primary application is launched, it executes at the same
hardware privilege as the kernel. As such the application can
directly call internal kernel routines to optimize its behavior.
This raises the interesting possibility of developing a novel
hybrid OS runtime.

We can consider a port of the scalable components of one
of the many available specialized OSes [4, 8, 10, 22, 25, 26, 29,
31-34, 36, 38, 43, 48, 51] that is linked with the primary appli-
cation but also designed, and implemented, to judiciously use
internal Linux routines to inherit Linux’s hardware compati-
bility. When the primary application is started, it bootstraps
the specialized OS components. It relies on these for core
functionality such as high performance scalable memory
allocation and event scheduling. However, rather than in-
cluding its own NIC driver, the specialized OS exploits the
standardized NAPI interfaces to use the NIC drivers present
in Linux. A similar approach can be take for other devices
such as GPUs, SSD, and other hardware. In this approach
an application can incrementally exploit the optimized code
paths of the specialized OS and the specialized OS can also
exploit Linux’s battle-tested codebase and large hardware
compatibility list to support a broad range of use-cases.
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