Check for
Updates

Can OS Specialization give new life to old carbon in
the cloud?

Han Dong Sanjay Arora
Boston University Red Hat Inc
Boston, USA New York, USA
handong@bu.edu saarora@redhat.com
ABSTRACT

Is there "fat" (overheads) in cloud computing infrastructure
software that can be trimmed? Would doing so help amelio-
rate the need for frequent hardware refreshes and extend the
life of existing hardware? In this paper, we demonstrate that,
indeed, there is "fat" that can be trimmed by using specialized
OS-based software stacks. Doing so can allow decade-old
computers to be used for critical cloud infrastructure services,
potentially yielding 3x improvements in efficiency compared
to standard software stacks on newer hardware. The impli-
cations of these results raise the possibility of exploiting
OS optimizations to reduce server hardware obsolescence.
Further, it suggests the importance of addressing the key
portability challenges of specialized OS stacks.

CCS CONCEPTS

« Hardware — Power and energy; - Computer systems
organization;

KEYWORDS

sustainability, operating systems, measurement

ACM Reference Format:

Han Dong, Sanjay Arora, Orran Krieger, and Jonathan Appavoo.
2024. Can OS Specialization give new life to old carbon in the cloud?.
In The 17th ACM International Systems and Storage Conference (SYS-
TOR °24), September 23-24, 2024, Virtual, Israel. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3688351.3689158

1 INTRODUCTION

In this paper, we discuss the opportunity to breathe new
life into old hardware by using specialized software for data
center-scale applications. Doing so can potentially reduce

This work is licensed under a Creative Commons Attribution International
4.0 License.

SYSTOR °24, September 23—24, 2024, Virtual, Israel

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1181-7/24/09.
https://doi.org/10.1145/3688351.3689158

83

Orran Krieger Jonathan Appavoo
Boston University Boston University
Boston, USA Boston, USA
okrieg@bu.edu jappavoo@bu.edu

cloud computing providers’ embodied and operational car-
bon footprints. However, to realize this potential, we must
address some challenges and open problems.

We present data suggesting that using specialized soft-
ware stacks for dedicated services can enable performance
improvements and energy savings by over 3X on older hard-
ware. These improvements make it viable to use older hard-
ware for performance critical services and help reduce hard-
ware obsolescence by prolonging the life of purchase hard-
ware within data centers. A data center operator can then
squeeze more value out of their investments by judiciously
using their modern higher-performance hardware.

1.1 Background

A hallmark of modern cloud computing are the fleets of
servers that run core infrastructure services such as in-
memory caches and databases [17]. While not glamorous,
these services are critical in ensuring that hot data used
on every web request resides in memory and thus can be
efficiently accessed and computed on.

For example, serving a single page involves many inter-
nal transactions accessing static and dynamic data such as
images, text, and generating personalized content like stats,
feeds, and ads. To ensure a fast response, this initial request
is split into many smaller parallel transactions to multiple
distributed servers. Each transaction must then complete
promptly to meet the provider’s service-level agreement
(SLA), an example is that 99% of requests are satisfied within
X milliseconds or microseconds. To meet these stringent la-
tency requirements, the aforementioned in-memory services
are often scaled horizontally in dedicated nodes, and run on
hundreds of clusters representing hundreds of thousands of
cores and growing [46, 49].

Ultimately, to meet these SLA targets while keeping the
development and maintenance burden of these web pages
reasonable, developers rely on generic reusable software
components, which in turn run on the generic, widely used
operating systems (OSes), such as Linux, that they know
and are familiar with. While it is easy and natural to de-
ploy on Linux, there is also a broad understanding in the
systems community that specialization improves overall effi-
ciency. Prior research has demonstrated that when running

https://doi.org/10.1145/3688351.3689158
https://doi.org/10.1145/3688351.3689158
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3688351.3689158&domain=pdf&date_stamp=2024-09-16

a single primary application, a specialized OS tailored to the
application’s needs, can yield orders of magnitude better per-
formance [4, 8, 10, 15, 22, 24-26, 29-34, 36, 38—-40, 43, 48, 51],
however, we find there has been limited works to explore
their performance and power efficiency [37]/carbon trade-
offs.

Therefore in this paper, we present preliminary results
from a novel comparative performance and carbon study of
two distinct OSes, Linux and a specialized library OS stack,
EbbRT [43], on different hardware generations. We demon-
strate that a baremetal EbbRT deployed on older process
node technology (Q3’14) can yield significant performance
and energy wins over newer hardware (Q2’21) running Linux.
Further, our results also suggest that with the ever-increasing
demands for cloud services, specialized OS stacks can help
abate the demand to replace/upgrade older hardware.

Obviously, the use of specialized OSes need not be re-
stricted to older hardware given prior work demonstrating
how newer hardware features are used for significant per-
formance gains [10, 15, 16, 25, 32, 36, 51]. However, in this
work we restrict EbbRT to run on older hardware in order to:
1) motivate its adoption to address server hardware obsoles-
cence while improving both performance and power/carbon
efficiency, 2) highlight the portability challenges to using li-
brary OSes such as EbbRT as it would’ve required significant
engineering effort (i.e. developing and maintaining device
drivers) to work with new hardware, 3) and help pave a way
forward of how one can marry the portability of Linux with
the advantages of these specialized stacks in §4.

The remainder of this paper is organized as follows. In
§2, we present results from our study on three generations
of Intel server-class nodes. We then discuss the results with
respect to carbon emissions in §3. In §4, we conclude with
a discussion of potential implications and future work that
our results suggest.

2 STUDY
2.1 Software Stacks

Our study aims to expose the performance and energy con-
sumption of generic versus specialized software stacks. Each
stack is composed of an OS and a primary application. We
use two applications that prior work has used to evaluate
in-memory services: 1) memcached [8, 14, 16, 32, 38, 43] and
a transactional database, silo [10, 36].

2.1.1 OSes. We explore the impact of software stack spe-
cialization by comparing a commodity OS, Linux, commonly
used by cloud providers and a research library OS, EbbRT,
designed for event-driven network-oriented applications.
These OSes represent two extremes in design: Linux is a
general-purpose OS with tens of millions of lines of code

84

supporting a wide range of hardware and applications, and
EbbRT is a specialized OS with about 20K lines of code that
supports a single application on a specific hardware platform.

Linux uses the default Ubuntu 22 images available on
CloudLab [13], which runs the Linux 5.15 kernel. To ensure
a fair comparison between the OSes, we optimize Linux
by using the performance governor!, fixing packet receive
interrupts to specific cores, and enabling large-page support.
We measure CPU package power and instruction counts
using Linux perf[18], which employs Intel RAPL [9] for
energy measurements, and has been independently validated
by other researchers [11, 27, 50].

EbbRT is a library OS/unikernel that was developed
almost a decade ago, whose advantages with respect to
KVM virtualized performance (over 2X compared to Linux)
was previously published [43]. Shortly after, we developed
an EbbRT device driver for the Intel 10 GbE NIC from
scratch [12], which permits EbbRT to run non-virtualized on
bare-metal hardware with this older NIC. Like other special-
ized OSs [4, 8, 10, 30, 32, 34, 36, 38, 48, 51], EbbRT features a
small optimized code base with custom event-driven inter-
faces and components designed to eliminate the overheads
associated with a general-purpose OSes. Optimized applica-
tions are written to these interfaces, compiled with the kernel
code, and executed within the single supervisor-privileged
domain.

Unfortunately, these specialized OSes have seen little adop-
tion due to the difficulty of maintaining and forward porting
them to new hardware and software. To our knowledge, be-
yond UniKraft[28], there are few, if any, non-active research
uni-kernels. Given our goal of evaluating, in the extreme,
what benefits OS specialization can have concerning breath-
ing new life into older hardware, we use bare-metal EbbRT,
which aggressively uses multi-threading, large-pages, and
has a version of both memcached and silo ported to it.

2.1.2 Applications. We use two standard applications to
evaluate our OS stacks.

memecached: This widely used OS-demanding caching
application benefits from specialization techniques like ker-
nel bypass to improve performance [8, 14, 16, 32, 38, 43]. In
our study, we use the Ubuntu-provided memcached-1.6.26
for the Linux stack, while EbbRT uses a re-implemented ver-
sion tailored to its native interfaces, supporting the standard
memcached binary protocol.

IWe also experimented with Linux’s dynamic ondemand governor, which
showed reduced overall performance compared to performance mode. For
example, in memcached on Linux-Node3, ondemand reached only 37% of the
peak throughput of performance. However, at lighter RPS rates, ondemand
used up to 43% less power than performance. Ultimately, EbbRT consumed
the least power overall, 2.3 times less than ondemand for the same RPS rates.

Can OS Specialization give new life to old carbon in the cloud?

SYSTOR ’24, September 23-24, 2024, Virtual, Israel

Name CPU Node | Release | Threads | TDP (W) | Idle (W) NIC DDR4 RAM SSD

Client || Intel Xeon Silver 4314 | 10 nm | Q2’21 32 135 45 Mellanox 40GbE 128GB 960 GB
Node1 Intel E5-2630 v3 22nm | Q3’14 2x 16 2x 85 16 Intel 82599ES 10GbE 128GB 480 GB
Node2 || Intel Xeon Silver 4114 | 14 nm | Q3’17 2x20 2x135 47 Intel X710 10GbE 192GB 480 GB
Node3 || Intel Xeon Silver 4314 | 10 nm | Q2’21 2x32 2x 135 89 Mellanox 40GbE 256GB 960 GB

Table 1: Different hardware used in experiments. We used Linux perf [18] to measure its idle power consumption. We have
also validated the idle power number on LibOS for Node1. Note that Node1, Node2, Node3 all have 2 packages in one node.

1000 T T 300 2.001e12
—¥— EbbRT-Nodel —@— Linux-Node3 ’
Linux-Nodel - SLO 250 1.75
8007 Linux-Node2
1.50
5 600 €125
a =)
< “é 1.00
" 400 2075
200 0.50
0.25
0 | | : | | } 0 | | : | : 0.00 | ; ! | :
500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Throughput (KRPS) Throughput (KRPS) Throughput (KRPS)
(a) (b) (©
Figure 1: Memcached latency, power, and instruction count measures at different RPS rates.
1000 T T T 300 2.001e12
—¥— EbbRT-Nodel —@— Linux-Node3 ’
Linux-Nodel - SLO 250 1.75
80071 Linux-Node2
1.50
3 200 0
2 B 5 1.25
é ‘.;) 150 5 1.00
3z 3 5
3 100 £075
F/w/"/v 0.50
50
0.25
0 0 0.00
200 400 600 800 100 200 300 400 500 600 700 100 200 300 400 500 600 700
Throughput (KRPS) Throughput (KRPS) Throughput (KRPS)
(@ (b) (c)

Figure 2: Silo latency, power, and instruction count measures at different RPS rates.

silo: Cloud services also use systems that support complex
operations on stored data, such as in-memory relational
databases (SQL and No-SQL) [3]. These databases impose
significantly more CPU and memory load per operation than
memcached. Silo [47] is designed to represent this type of
application. We built, from source, a version of silo [35]
with a web front-end for both OSes. Each incoming web
request triggers a set of TPC-C transactions on its in-memory
database component.

2.2 Hardware

Details of the hardware nodes used in the study are in Ta-
ble 1. We set up a cluster of these nodes using CloudLab [13].
The core goal is to compare EbbRT booted on the oldest
CPU technology, Node1 (2014), to Linux on all three CPU
generations: Node1 (2014), Node2 (2017), and Node3 (2021).

85

2.3 Methodology

To generate load on the memcached and silo servers, we use
the mutilate [21] tool in order to create load across a total of
1280 connections - this is coordinated by using four of the
Client node type shown in table 1. The load is based on the
representative ETC workload from Facebook [5]. We use a
standard SLA (as used by others [8, 16, 32, 36, 43]) of 99%
latency under 500 us for both applications and we increase
the amount of requests-per-second (RPS) at mean rates until
the server node is saturated where it can no longer meet the
SLA. We run each mean RPS rate for a total of 30 seconds in
order to measure the server node’s power, instruction count,
and the reported 99% latency at the corresponding RPS rate.
Experiments were repeated up to four times, with worst-case
standard deviations of 2.49% from the mean.

SYSTOR ’24, September 23-24, 2024, Virtual, Israel

2.4 Performance Results

Fig. 1 and fig. 2 illustrates the overall data from our study.
For each application, we present performance as the load is
increased (fig. 1a and fig. 2a), along with its measured power
consumption (fig. 1b and fig. 2b,) and instruction counts
(fig. 1c and fig. 2c)%.

By enabling both OS stacks to use all available cores on a
hardware node, we can observe how the stacks compare
in terms of their ability to satisfy a particular load (e.g.
throughput in KRPS). The memcached results indicate that
EbbRT-Node1 can satisfy requested loads with considerably
fewer instructions: almost 5X reduction when compared to
Linux-Node1l. This reduction reveals both the "fat" (over-
heads) of the general-purpose OS and the ability of the spe-
cialized OS to trim it.

We note that given the OS-centric nature of memcached,
the instruction counts in fig. 1c reveals more insight into the
ability of EbbRT to squeeze more out of the hardware. While
it is unsurprising that Linux-Node2, and Linux-Node3 re-
quire more instructions given the higher thread count of their
CPUs, EbbRT-Node1 can still achieve a higher peak through-
put (1.75X over Linux-Node3) while using the fewer threads
available on Node1. Furthermore, contrasting the shape of
the curves, one can see that EbbRT’s instruction count scales
linearly with the load. This indicates its ability to use the
threads of the Node1 more efficiently. In contrast, the non-
linearity of the Linux curves shows poorer scalability and
suggests multi-core overheads. Prior works in optimizing
memcached [8, 16, 32, 36, 43] have also remarked on these
scalability issues.

Given that silo is a more compute-intensive application
and that both OS stacks are constructed with the same appli-
cation source, it is harder to see the instruction count differ-
ences in fig. 2c. The raw data reveals that at a query rate of
100 KRPS on Node1, EbbRT requires 22% fewer instructions
compared to Linux. While not as dramatic a difference, elim-
inating this overhead helped contribute to the specialized
OS being able to squeeze out a 2X improvement in the peak
throughput compared to Linux-Node1 and Linux-Node2.
Lastly, we note that the increased number of CPUs and faster
clock speeds of Node3 eventually enable Linux to achieve the
highest peak throughput for silo in our study (1.75X better
than EbbRT-Node1). The following sections examines the
carbon implications of these trade-offs in more detail.

3 CARBON ANALYSIS

In the prior section, we observed that a specialized software
stack can support critical work with fewer instructions, re-
sulting in greater efficiency, higher performance, and lower

Note for figures (b) and (c), we filter out RPS values that violate the SLA
objective.

86

Han Dong, Sanjay Arora, Orran Krieger, and Jonathan Appavoo

CO2 (kg)
CPU | DRAM | SSD | Total
Nodel | 14.2 | 86.9 17.3 | 1184
Node2 | 13.1 | 122.5 17.3 | 152.9
Node3 | 15.1 | 172.5 34.3 | 221.9

Table 2: Embodied carbon calculations.

energy consumption when run on older hardware (a 22nm-
2014 CPU, DRAM, and NIC conforming to a networking
standard defined in 2002 [1]). This data also exposes a form
of software-driven hardware obsolescence that increases e-
waste and carbon. To extrapolate on this observation, we
conduct an analysis below which considers both the embod-
ied and operational carbon of our study.

3.1 Computational Carbon Intensity (CCI)

For this analysis, we use the Computational Carbon Intensity
(CCI) metric [45] as it helps calculate the lifetime CO2 re-
leased per unit of work. Further, CCI captures both embodied
and operational carbon while rewarding the reuse of existing

o (Cp+CoHC
hardware. Roughly, CCI is defined as: Zuss “'Z""e(M+O)
lifetime ps

Cy is the embodied carbon and we use information pro-
vided by ACT [19], to calculate it for the three servers used in
our study in table 23. C¢ is operational carbon and it is calcu-
lated as Cly,iq * E where Cly,;q is the carbon intensity of the
electrical grid and E is energy consumption of the server. We
calculated a Cly;q of 277.3 gCO2/kWh using a New England
resource mix [20]. Cy is networking carbon and is calculated
as Clyrig * fuet * Elner, where fre; is the server’s NIC speed and
ET,.; is energy intensity of networking; we use a published
value of 2.7 pJoules/Byte [6]. We consider the lifetime ops
of each server as the peak rates shown in fig. 1a, fig. 2a sus-
tained across multiple years. CCI does not consider multiple
lifetimes (i.e. repairs/maintenance) as it can be difficult to
get this visibility in old hardware.

EN

[oe]

mmmm EbbRT-Nodel
Linux-Nodel

=== Linux-Node2

= = Linux-Node3 fersssnnnnunnnnnnn

w
(o]

Frs s s s s E v e m— —

=
N

v — — —

CCl (mgCO:2/Request)
o N

CCl (mgCO2/Request)
sy

o

0 10 20 30 40 50 0
Lifetime (months)

10 20 30 40 50
Lifetime (months)

(a) memcached (b) silo
Figure 3: CCI for both workloads. Lower is better.

3We expect the embodied carbon trend to continue to increase as a modern
server, such as those deployed in the Aurora supercomputing cluster (10nm
CPU, deployed 2023) [2], contains an embodied carbon of 732 kg.

3.2 Analysis

Fig. 3 shows the computed CCI for memcached and silo
across both OSes. Similar to [45], we assume Cy; (embodied
carbon) of the oldest server, Node1, is 0. Further, a refur-
bished server such as Node1 [42] can also be purchased for
4X cheaper compared to Node3 [44].

In both memcached and silo, EbbRT-Node1 achieved the
lowest CCI and is typically 2-6X lower compared to Linux.
We find that the peak RPS-per-Watt of EbbRT-Node1 con-
tributed greatly to its lower CCI as well as the carbon savings
from the use of older hardware components (i.e. CPU, NIC,
etc). Further, by sticking with EbbRT-Node1, a provider not
only abates the need to upgrade a memcached server un-
til the request peak rate increases above 2800 KRPS (1.75X
beyond Linux-Node3), but it also can exploit the low CCI
to process each request more efficiently. For silo, though
EbbRT-Nodel cannot reach the peak RPS of Linux-Node3,
its CCI efficiency indicates a provider could choose to scale
horizontally by purchasing from the refurbished market an-
other Node1 hardware instead.

It has been noted that the load on web service’s fluctuate
significantly due to its diurnal patterns [5, 23]; with datacen-
ter service’s often running at low utilization to respond to
bursty behavior [7]. From a carbon perspective, this can sig-
nificantly change the trade-offs concerning hardware refresh
that specialized OSes can help unlock. Node1 (2014) has both
a lower idle power consumption and thermal design power
(TDP)* when compared to Node2 (2017) and Node3 (2021).
For memcached at peak load, Linux-Node3 induced only a
1.33X increase in power when compared to Linux-Node1, at
lighter loads (200 KRPS) we find this actually increased to
over 2.84X. In contrast, using EbbRT-Node1 yields a reduc-
tion of 12% power compared to Linux-Node1 at light loads.
Therefore over a server’s lifetime, we find that the combina-
tion of a specialized stack running on older hardware serves
as better units for horizontal scaling while reducing both
embodied and operational carbon costs.

4 FUTURE DIRECTIONS

Our study illustrates how optimizing the OS can help address
the three R’s of sustainability for cloud providers [19]: 1)
Reduce the demand for new hardware systems, 2) Reuse
older systems for a broader set of roles, and 3) have a path to
utilizing Recycled hardware for modern use cases. However,
there are still some open questions and challenges that must
be addressed.

As mentioned, although there have been significant ef-
fort for over a decade to build specialized OSes; there has
been little real-world deployments of these systems due to

4TDP is a Intel provided metric that represents the average power the
processor dissipates under some predefined high-complexity workload.

87

their portability limitations. To reap the potential benefits
that our study suggests, the challenges of porting specialized
OSes deserve more attention. From literature, we find a key
optimization approach taken by these systems is to bypass
traditional kernel paths and co-optimize directly with the
hardware (i.e. NICs) itself; either through in-house imple-
mentations [15, 34, 43] or the use of third-party libraries such
as DPDK [8, 10, 24, 25, 32, 36, 51]. Unfortunately, this limits
its portability as these systems typically require a rewrite or
modification of the original application to take advantage of
systems optimizations. Ideally, one would like to marry the
portability and richness of Linux with specialized OS stacks.

Junction [15] is an example of recent library OS work that
makes kernel-bypass practical by adding compatibility to
run unmodified Linux applications. However, it relies on ad-
vanced hardware features of new data center CPUs and NICs
(as well as a custom mlnx5 driver). Another approach is to
take incremental steps instead where any unmodified appli-
cation, running on Linux, can be the starting point and incre-
mental application and OS co-optimization can be induced
to move its performance and power profile towards special-
ized OSes. Expanding on this, UniKernel Linux (UKL) [41],
introduces a set of Linux kernel configurations that permits
primary application to be compiled into the kernel. When
the primary application is launched, it executes at the same
hardware privilege as the kernel. As such the application can
directly call internal kernel routines to optimize its behavior.
This raises the interesting possibility of developing a novel
hybrid OS runtime.

We can consider a port of the scalable components of one
of the many available specialized OSes [4, 8, 10, 22, 25, 26, 29,
31-34, 36, 38, 43, 48, 51] that is linked with the primary appli-
cation but also designed, and implemented, to judiciously use
internal Linux routines to inherit Linux’s hardware compati-
bility. When the primary application is started, it bootstraps
the specialized OS components. It relies on these for core
functionality such as high performance scalable memory
allocation and event scheduling. However, rather than in-
cluding its own NIC driver, the specialized OS exploits the
standardized NAPI interfaces to use the NIC drivers present
in Linux. A similar approach can be take for other devices
such as GPUs, SSD, and other hardware. In this approach
an application can incrementally exploit the optimized code
paths of the specialized OS and the specialized OS can also
exploit Linux’s battle-tested codebase and large hardware
compatibility list to support a broad range of use-cases.

ACKNOWLEDGMENTS

We would like to thank our shepherd, David Irwin, for his
help in preparing the final version. This work is supported
through the Red Hat Collaboratory, Optimizing Kernel Paths
for Performance and Energy Hardware, 2024-01-RHO09.

SYSTOR ’24, September 23-24, 2024, Virtual, Israel Han Dong, Sanjay Arora, Orran Krieger, and Jonathan Appavoo

REFERENCES 1012889.1012894

[1] [n.d.]. 10 Gigabit Ethernet. https://en.wikipedia.org/wiki/10_Gigabit_ (15] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse,
Ethernet. Inigo Goiri, Sameh Elnikety, Rodrigo Fonseca, and Adam Belay. 2024.

Making Kernel Bypass Practical for the Cloud with Junction. In 21st
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). USENIX Association, Santa Clara, CA, 55-73. https://www.
usenix.org/conference/nsdi24/presentation/fried

[16] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.

[2] [n.d.]. Aurora System Overview. https://docs.alcf.anl.gov/aurora/
hardware-overview/machine-overview/.

[3] [n.d.]. List of in-memory databases. https://en.wikipedia.org/wiki/
List_of_in-memory_databases.

[4] Antti Kantee, Justin Cormack. [n.d.]. Rump Kernels: No OS? No Prob-

[

—

—

—_

lem! https://www.usenix.org/publications/login/october-2014-vol-39-
no->5.

Atikoglu, Berk and Xu, Yuehai and Frachtenberg, Eitan and Jiang,
Song and Paleczny, Mike. 2012. Workload Analysis of a Large-
scale Key-value Store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems (London, England, UK) (SIGMET-
RICS ’12). ACM, New York, NY, USA, 53-64. https://doi.org/10.1145/
2254756.2254766

Jayant Baliga, Robert W. A. Ayre, Kerry Hinton, and Rodney S.
Tucker. 2011. Green Cloud Computing: Balancing Energy in Pro-
cessing, Storage, and Transport. Proc. IEEE 99, 1 (2011), 149-167.
https://doi.org/10.1109/JPROC.2010.2060451

Luiz Andre Barroso and Urs Hoelzle. 2009. The Datacenter As a Com-
puter: An Introduction to the Design of Warehouse-Scale Machines (1st
ed.). Morgan and Claypool Publishers.

Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In Proceed-
ings of the 11th USENIX Conference on Operating Systems Design and
Implementation (Broomfield, CO) (OSDI’14). USENIX Association, USA,
49-65.

Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna,
and Christian Le. 2010. RAPL: Memory Power Estimation and Cap-
ping. In Proceedings of the 16th ACM/IEEE International Symposium on
Low Power Electronics and Design (Austin, Texas, USA) (ISLPED ’10).
Association for Computing Machinery, New York, NY, USA, 189-194.
https://doi.org/10.1145/1840845.1840883

Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When
Idling is Ideal: Optimizing Tail-Latency for Heavy-Tailed Datacenter
Workloads with Perséphone. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY, USA,
621-637. https://doi.org/10.1145/3477132.3483571

Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. 2016. A
Validation of DRAM RAPL Power Measurements. In Proceedings of the
Second International Symposium on Memory Systems (Alexandria, VA,
USA) (MEMSYS ’16). Association for Computing Machinery, New York,
NY, USA, 455-470. https://doi.org/10.1145/2989081.2989088

Han Dong, Sanjay Arora, Yara Awad, Tommy Unger, Orran Krieger,
and Jonathan Appavoo. 2021. Slowing Down for Performance
and Energy: An OS-Centric Study in Network Driven Workloads.
arXiv:cs.05/2112.07010

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Opera-
tion of CloudLab. In Proceedings of the USENIX Annual Technical Confer-
ence (ATC). 1-14. https://www.flux.utah.edu/paper/duplyakin-atc19

[14] Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux

Journal 2004, 124 (Aug. 2004), 5. http://dl.acm.org/citation.cfm?id=

Caladan: mitigating interference at microsecond timescales (OSDI’20).
USENIX Association, USA, Article 16, 17 pages.

Yu Gan, Yangi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jack-
son, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen,
Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo
Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delim-
itrou. 2019. An Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud & Edge Systems. In
Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Prov-
idence, RI, USA) (ASPLOS °19). Association for Computing Machinery,
New York, NY, USA, 3-18. https://doi.org/10.1145/3297858.3304013
Brendan Gregg. [n.d.]. perf Examples. https://www.brendangregg.
com/perf.html.

Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S.
Lee, David Brooks, and Carole-Jean Wu. 2022. ACT: designing
sustainable computer systems with an architectural carbon model-
ing tool. In Proceedings of the 49th Annual International Symposium
on Computer Architecture (New York, New York) (ISCA °22). Asso-
ciation for Computing Machinery, New York, NY, USA, 784-799.
https://doi.org/10.1145/3470496.3527408

ISO New England. [n.d.]. https://www.iso-ne.com/. Accessed on
08/20/2024.

[21] J. Leverich. [n.d.]. Mutilate: high performance memcached load gener-

ator. https://github.com/leverich/mutilate.

EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan IThm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a
Highly Scalable User-level TCP Stack for Multicore Systems. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). USENIX Association, Seattle, WA, 489-502. https://www.
usenix.org/conference/nsdil4/technical-sessions/presentation/jeong

Rashmi Vinayak Juncheng Yang, Yao Yue. 2020. A large scale analysis
of hundreds of in-memory cache clusters at Twitter. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20). USENIX Association. https://www.usenix.org/conference/osdi20/
presentation/yang

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Maziéres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for microsecond-scale Tail Latency. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, Boston, MA, 345-360. https://www.usenix.org/
conference/nsdi19/presentation/kaffes

Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacen-
ter RPCs can be General and Fast. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX As-
sociation, Boston, MA, 1-16. https://www.usenix.org/conference/
nsdil9/presentation/kalia

Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Ander-
son, and Arvind Krishnamurthy. 2016. High Performance Packet
Processing with FlexNIC. In Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16).
Association for Computing Machinery, New York, NY, USA, 67-81.

https://en.wikipedia.org/wiki/10_Gigabit_Ethernet
https://en.wikipedia.org/wiki/10_Gigabit_Ethernet
https://docs.alcf.anl.gov/aurora/hardware-overview/machine-overview/
https://docs.alcf.anl.gov/aurora/hardware-overview/machine-overview/
https://en.wikipedia.org/wiki/List_of_in-memory_databases
https://en.wikipedia.org/wiki/List_of_in-memory_databases
https://www.usenix.org/publications/login/october-2014-vol-39-no-5
https://www.usenix.org/publications/login/october-2014-vol-39-no-5
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1109/JPROC.2010.2060451
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/3477132.3483571
https://doi.org/10.1145/2989081.2989088
https://arxiv.org/abs/cs.OS/2112.07010
https://www.flux.utah.edu/paper/duplyakin-atc19
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894
https://www.usenix.org/conference/nsdi24/presentation/fried
https://www.usenix.org/conference/nsdi24/presentation/fried
https://doi.org/10.1145/3297858.3304013
https://www.brendangregg.com/perf.html
https://www.brendangregg.com/perf.html
https://doi.org/10.1145/3470496.3527408
https://www.iso-ne.com/
https://github.com/leverich/mutilate
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/osdi20/presentation/yang
https://www.usenix.org/conference/osdi20/presentation/yang
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://www.usenix.org/conference/nsdi19/presentation/kalia

Can OS Specialization give new life to old carbon in the cloud?

[27

[28

[29

(30

[31

(32

(33

[34

(35

(36

(37

(38

—

]

—

[t

—

]

[t

=

= =

—

—

https://doi.org/10.1145/2872362.2872367

Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen,
and Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL
for Power Measurements. ACM Trans. Model. Perform. Eval. Comput.
Syst. 3, 2, Article 9 (March 2018), 26 pages. https://doi.org/10.1145/
3177754

Simon Kuenzer, Vlad-Andrei Badoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Stefan Teodorescu, Costi Raducanu, Cristian Banu, Laurent Mathy,
Rézvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft:
fast, specialized unikernels the easy way. In Proceedings of the Sixteenth
European Conference on Computer Systems (Online Event, United King-
dom) (EuroSys °21). Association for Computing Machinery, New York,
NY, USA, 376-394. https://doi.org/10.1145/3447786.3456248
Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-Memory Key-
Value Storage. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). USENIX Association, Seattle,
WA, 429-444. https://www.usenix.org/conference/nsdil4/technical-
sessions/presentation/lim

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for
the Cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (Houston, Texas, USA) (ASPLOS ’13). ACM, New York, NY,
USA, 461-472. https://doi.org/10.1145/2451116.2451167

Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Network
Stack Specialization for Performance. In Proceedings of the 2014 ACM
Conference on SSIGCOMM (Chicago, lllinois, USA) (SSGCOMM ’14). ACM,
New York, NY, USA, 175-186. https://doi.org/10.1145/2619239.2626311
Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-Sensitive Datacenter Workloads. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation
(Boston, MA, USA) (NSDI'19). USENIX Association, USA, 361-377.
Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T.
Morris. 2012. Improving Network Connection Locality on Multi-
core Systems. In Proceedings of the 7th ACM European Conference
on Computer Systems (Bern, Switzerland) (EuroSys ’12). Association
for Computing Machinery, New York, NY, USA, 337-350. https:
//doi.org/10.1145/2168836.2168870

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2015. Arrakis:
The Operating System Is the Control Plane. ACM Trans. Comput. Syst.
33, 4, Article 11 (Nov. 2015), 30 pages. https://doi.org/10.1145/2812806
George Prekas. 2017. https://github.com/ix-project/servers/tree/
master.

George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-Scale Networked Tasks.
In Proceedings of the 26th Symposium on Operating Systems Principles
(Shanghai, China) (SOSP ’17). Association for Computing Machinery,
New York, NY, USA, 325-341. https://doi.org/10.1145/3132747.3132780
George Prekas, Mia Primorac, Adam Belay, Christos Kozyrakis, and
Edouard Bugnion. 2015. Energy Proportionality and Workload Con-
solidation for Latency-Critical Applications. In Proceedings of the
Sixth ACM Symposium on Cloud Computing (Kohala Coast, Hawaii)
(SoCC ’15). Association for Computing Machinery, New York, NY, USA,
342-355. https://doi.org/10.1145/2806777.2806848

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. 2018. Arachne: Core-Aware Thread Management. In 13th

89

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

SYSTOR ’24, September 23-24, 2024, Virtual, Israel

USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18). USENIX Association, Carlsbad, CA, 145-160. https:
/Iwww.usenix.org/conference/osdil8/presentation/qin

Rajesh Nishtala and Hans Fugal and Steven Grimm and Marc
Kwiatkowski and Herman Lee and Harry C. Li and Ryan McElroy
and Mike Paleczny and Daniel Peek and Paul Saab and David Stafford
and Tony Tung and Venkateshwaran Venkataramani. 2013. Scaling
Memcache at Facebook. In Presented as part of the 10th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 13).
USENIX, Lombard, IL, 385-398. https://www.usenix.org/conference/
nsdil3/technical-sessions/presentation/nishtala

Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drep-
per, Richard Jones, Orran Krieger, Renato Mancuso, and Larry Wood-
man. 2019. Unikernels: The Next Stage of Linux’s Dominance. In
Proceedings of the Workshop on Hot Topics in Operating Systems (Berti-
noro, Italy) (HotOS ’19). Association for Computing Machinery, New
York, NY, USA, 7-13. https://doi.org/10.1145/3317550.3321445

Ali Raza, Thomas Unger, Matthew Boyd, Eric B Munson, Parul So-
hal, Ulrich Drepper, Richard Jones, Daniel Bristot De Oliveira, Larry
Woodman, Renato Mancuso, Jonathan Appavoo, and Orran Krieger.
2023. Unikernel Linux (UKL). In Proceedings of the Eighteenth Eu-
ropean Conference on Computer Systems (Rome, Italy) (EuroSys ’23).
Association for Computing Machinery, New York, NY, USA, 590-605.
https://doi.org/10.1145/3552326.3587458

Restored Cisco C220 M4 1U Rack Server. [n.d.]. https://www.walmart.
com/ip/Restored-Cisco-C220-M4-1U-Rack-Server-2-x-Intel-Xeon-
E5-2630-v4-Deca-core-10-Core-2-20- GHz-64- GB-Installed-DDR4-
SDRAM-Serial- ATA-600-Controller-0-1-1/5107050837. Accessed on
08/19/2024.

Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2016. EbbRT: A Framework for Building Per-
Application Library Operating Systems. In 12th USENLX Symposium on
Operating Systems Design and Implementation (OSDI 16). USENIX As-
sociation, GA, 671-688. https://www.usenix.org/conference/osdil6/
technical-sessions/presentation/schatzberg

Supermicro 2U Ultra SuperServer (SYS-220U-TNR).
https://store.supermicro.com/us_en/supermicro-2u-ultra-
superserver-sys-220u-tnr.html. Accessed on 08/19/2024.
Jennifer Switzer, Gabriel Marcano, Ryan Kastner, and Pat Pannuto.
2023. Junkyard Computing: Repurposing Discarded Smartphones
to Minimize Carbon. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023).
Association for Computing Machinery, New York, NY, USA, 400-412.
https://doi.org/10.1145/3575693.3575710

Chungiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor,
Scott Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew
Clark, Kabir Gogia, Long Cheng, Ben Christensen, Alex Gartrell,
Maxim Khutornenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan,
and Peter Zhang. 2020. Twine: A Unified Cluster Management System
for Shared Infrastructure. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20). USENIX Association, 787—
803. https://www.usenix.org/conference/osdi20/presentation/tang
Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and
Samuel Madden. 2013. Speedy Transactions in Multicore In-Memory
Databases. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13).
Association for Computing Machinery, New York, NY, USA, 18-32.
https://doi.org/10.1145/2517349.2522713

Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architec-
ture for Well-Conditioned, Scalable Internet Services. SIGOPS Oper.

[n.d.].

https://doi.org/10.1145/2872362.2872367
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3447786.3456248
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/2168836.2168870
https://doi.org/10.1145/2168836.2168870
https://doi.org/10.1145/2812806
https://github.com/ix-project/servers/tree/master
https://github.com/ix-project/servers/tree/master
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/2806777.2806848
https://www.usenix.org/conference/osdi18/presentation/qin
https://www.usenix.org/conference/osdi18/presentation/qin
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://doi.org/10.1145/3317550.3321445
https://doi.org/10.1145/3552326.3587458
https://www.walmart.com/ip/Restored-Cisco-C220-M4-1U-Rack-Server-2-x-Intel-Xeon-E5-2630-v4-Deca-core-10-Core-2-20-GHz-64-GB-Installed-DDR4-SDRAM-Serial-ATA-600-Controller-0-1-1/5107050837
https://www.walmart.com/ip/Restored-Cisco-C220-M4-1U-Rack-Server-2-x-Intel-Xeon-E5-2630-v4-Deca-core-10-Core-2-20-GHz-64-GB-Installed-DDR4-SDRAM-Serial-ATA-600-Controller-0-1-1/5107050837
https://www.walmart.com/ip/Restored-Cisco-C220-M4-1U-Rack-Server-2-x-Intel-Xeon-E5-2630-v4-Deca-core-10-Core-2-20-GHz-64-GB-Installed-DDR4-SDRAM-Serial-ATA-600-Controller-0-1-1/5107050837
https://www.walmart.com/ip/Restored-Cisco-C220-M4-1U-Rack-Server-2-x-Intel-Xeon-E5-2630-v4-Deca-core-10-Core-2-20-GHz-64-GB-Installed-DDR4-SDRAM-Serial-ATA-600-Controller-0-1-1/5107050837
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg
https://store.supermicro.com/us_en/supermicro-2u-ultra-superserver-sys-220u-tnr.html
https://store.supermicro.com/us_en/supermicro-2u-ultra-superserver-sys-220u-tnr.html
https://doi.org/10.1145/3575693.3575710
https://www.usenix.org/conference/osdi20/presentation/tang
https://doi.org/10.1145/2517349.2522713

SYSTOR ’24, September 23-24, 2024, Virtual, Israel

[49

[50

]

=

Syst. Rev. 35, 5 (Oct. 2001), 230-243. https://doi.org/10.1145/502059.
502057

Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis
of hundreds of in-memory cache clusters at Twitter. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 191-208. https://www.usenix.org/conference/
o0sdi20/presentation/yang

Huazhe Zhang and H Hoffman. 2015. A Quantitative Evaluation of
the RAPL Power Control System. Feedback Computing (2015).

90

Han Dong, Sanjay Arora, Orran Krieger, and Jonathan Appavoo

[51] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob

Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Korn-
feld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin,
Piali Choudhury, and Anirudh Badam. 2021. The Demikernel Dat-
apath OS Architecture for Microsecond-scale Datacenter Systems.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP °21). Association
for Computing Machinery, New York, NY, USA, 195-211. https:
//doi.org/10.1145/3477132.3483569

https://doi.org/10.1145/502059.502057
https://doi.org/10.1145/502059.502057
https://www.usenix.org/conference/osdi20/presentation/yang
https://www.usenix.org/conference/osdi20/presentation/yang
https://doi.org/10.1145/3477132.3483569
https://doi.org/10.1145/3477132.3483569

	Abstract
	1 Introduction
	1.1 Background

	2 Study
	2.1 Software Stacks
	2.1.1 OSes
	2.1.2 Applications

	2.2 Hardware
	2.3 Methodology
	2.4 Performance Results

	3 Carbon Analysis
	3.1 Computational Carbon Intensity (CCI)
	3.2 Analysis

	4 Future Directions
	References

