Check for
Updates

Towards Performance and Energy Aware Kubernetes Scheduler

HAN DONG, Hamilton College, USA

PARUL SINGH, Red Hat Inc, Netherlands

YARA AWAD, Boston University, USA

FELIX GEORGE, IBM Research, India
KRISHNASURI NARAYANAM, IBM Research, India
SANJAY ARORA, Red Hat Inc, USA

JONATHAN APPAVOOQ, Boston University, USA

As cloud services become increasingly latency-sensitive and data center
energy usage rises, there is an urgent need to address both operational
and embodied carbon cost. However, data centers often overprovision re-
sources, resulting in resource under-utilization. These inefficiencies not
only waste energy but also accelerate hardware refresh cycles, exacerbat-
ing embodied emissions. In this work, we present PAX, a performance and
energy aware Kubernetes scheduler that leverages machine learning tech-
niques. Specifically, we present preliminary results from using Bayesian
optimization to optimize microservices across a heterogeneous cluster. PAX
improves application performance compared to modern schedulers and en-
ables carbon-conscious scheduling by dynamically placing workloads on
old and new servers based on performance sensitivity. The results illustrate
an opportunity to reduce operational carbon while extending server life-
times to mitigate embodied emissions. Our approach highlights the potential
of ML-enhanced scheduling as a mechanism for improving both resource
efficiency and sustainability in modern cloud infrastructures.

CCS Concepts: » General and reference — Experimentation; - Networks
— Cloud computing; - Hardware — Impact on the environment.

1 INTRODUCTION

Latency-sensitive cloud services [18, 40] play a critical role in the
interactivity of many user-facing applications. Supporting these
services requires a growing fleet of servers to represent hundreds
of clusters which encompass hundreds of thousands of cores [40].
As global data center energy use rises [16, 23, 31, 34, 36], it is
critical to find ways to meet the requirements of applications while
reducing their carbon emissions. This issue is further exacerbated as
research has shown that the embodied carbon of servers can account
for almost half of data center emissions [28]. This is even more
important given the strain on data center power by generative AL
Sustainable computing is becoming paramount [13, 32], especially
in light of projections that carbon emissions from data centers could
account for as much as 8% of global emissions within a decade [22].
Our work focuses on addressing these challenges in the area of
cluster resource scheduling and allocating compute resources to
microservices. Previous work [10] has shown that resource under
utilization is a widespread phenomenon in data centers, with the
majority of servers operating at less than 25% CPU utilization. Ad-
dressing this resource under-utilization is fundamental to improving
data center sustainability, whether by making better use of existing

Authors’ addresses: Han Dong, hdong@hamilton.edu, Hamilton College, USA; Parul
Singh, parsingh@redhat.com, Red Hat Inc, Netherlands; Yara Awad, awadyn@bu.edu,
Boston University, USA; Felix George, Felix.George@ibm.com, IBM Research, India;
Krishnasuri Narayanam, knaraya3@in.ibm.com, IBM Research, India; Sanjay Arora,
saarora@redhat.com, Red Hat Inc, USA; Jonathan Appavoo, jappavoo@bu.edu, Boston
University, USA.

ACM SIGENERGY Energy Informatics Review

69

hardware or by prolonging the utility of older hardware. Improv-
ing the performance of applications means further reduction in
newly purchased hardware. Being able to maintain application per-
formance through judicious use of older hardware platforms helps
encourage hardware reuse and reduces embodied carbon. Improv-
ing the performance and energy efficiency of applications can also
allow more of the data center power budget to be directed towards
power intensive applications such as generative AL

In this work, we present study results from the PEAKS project [35]
of an experimental system PAX (PEAKS + AX), a performance and
energy aware Kubernetes scheduler. PAX leverages insights from
modern schedulers such as Cilantro [6] and the Horiziontal Pod
Autoscaler (HPA) [26] to dynamically scale up the number of Ku-
bernetes pods as demand and workload changes. PAX improves
upon these schedulers by treating both the scaling of pods and their
placement on different server hardware as avenues for optimization.
Prior work[14, 39] has illustrated the opportunity of mixing old and
new hardware to maintain performance while reducing carbon, and
our work focuses on exploring this in Kubernetes schedulers. In
this paper we study the potential for using hardware heterogene-
ity to exploit trade-offs in performance and carbon. For example,
PAX may preferentially place latency-critical pods on newer servers
while allocating less demanding pods to older servers that would
otherwise be underutilized. PAX leverages the Adaptive Experi-
mentation Platform (AX-platform) [29], a machine learning system
for black-box parameter tuning, and applies it to the problem of
pod scheduling across heterogeneous cluster resources. This paper
makes the following contributions:

(1) Our results demonstrate that PAX is able to yield better
performance and is robust to hardware heterogeneity. Our
exploration of PAX highlights new opportunities to improve
upon performance of modern hardware platforms. The ap-
proach we explore yielded up to 5X lower P99 latency for
our chosen workload when compared to Cilantro and HPA
across hardware clusters.

(2) Our results indicate the potential performance and carbon
benefits of mixing different hardware. For example, across
all three schedulers studied, we find that deploying pods
on a heterogeneous cluster which consists of old and new
hardware can even outperform deploying on new hardware
while reducing energy consumption. Specifically, the mixed
hardware cluster achieved up to 2.3X lower P99 latency and
up to 45% lower power use.

Volume 5 Issue 2, July 2025

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3757892.3757902&domain=pdf&date_stamp=2025-08-06

(3) In contrast to Cilantro and HPA, our approach applies black-
box parameter tuning to both scale the number of pods as
well as the placement of pods on specific server hard-
ware. Our results indicate that combined approach yields
interesting trade-offs in performance, operational, and em-
bodied carbon. They also underscore the need for more work
to help quantify the conditions under which these trade-offs
are achievable.

Performance-Power
metrics

Job

Kubernetes Cluster

User optimization
objectives

Re-allocate:
1. Scale pod replicas
2. Pod-to-Node

PAX Scheduler

Fig. 1. High-level system design of PAX.

2 PAX OVERVIEW

Kubernetes is an open-sourced orchestration platform [8] for au-
tomating the deployment, scaling and management of containers.
A node is a worker machine that is part of the Kubernetes cluster.
A pod can be a group of one or more containers. Each node can
have multiple pods deployed on it, and this pod-to-node placement
is handled by the Kubernetes scheduler. Modern jobs deployed in a
Kubernetes cluster typically consist of a diverse suite of microser-
vices [18] spanning multiple pods and nodes.

In this work, PAX is used to optimize the 99th percentile tail la-
tency in the hotel reservation benchmark from DeathStarBench [18].
This benchmark consists of 19 microservices, including 6 MongoDB
databases, 3 key-value stores, an nginx web server using consul,
and various other book-keeping services. This benchmark is repre-
sentative of a modern job that can be deployed in Kubernetes, as
each of the microservices is deployed in an individual pod. In such
an application, there is typically a complicated inter-dependence
between microservices, since handling a request can trigger multi-
ple downstream queries to multiple backends running in different
pods and nodes. The hotel reservation requests are generated by the
wrk2 [20] workload generator and we use the default mixed query
load provided by DeathStarBench [18].

The overarching goal of PAX is to scale the number of pods
within a fixed budget of CPUs, where one pod consumes one CPU,
to minimize latency. In our current design, a running job periodically
exports its current performance and/or power metrics to a shared file
system accessible by PAX. Upon receiving new data, the scheduler
will use user-defined optimization objectives to select the relevant
parameters for optimization. This step is done by the ax-platform,
where a custom Bayesian optimization [17] phase is initiated to
select the Kubernetes parameters that optimize the chosen objective
- i.e. minimizing P99. The scheduler communicates directly with
Kubernetes API client to apply the parameter changes in the cluster.

Bayesian optimization (BO) is a black-box tuning approach that al-
lows one to tune parameters in relatively few iterations by building

ACM SIGENERGY Energy Informatics Review

70

a smooth model from an initial set of parameterizations (typically
quasi-random) in order to predict the outcomes for yet unexplored
parameterizations. BO is an adaptive approach where the observa-
tions from previous evaluations are used to decide what parameteri-
zations to evaluate next. In PAX, the parameters include the number
of replicas for each pod type and the specific node on which each
pod type is deployed, this is determined by the cluster configuration.
After these parameters are tuned, the objective function in BO will
be to evaluate the resulting P99 latency in order to make better
predictions on how pod scaling and node placement can be used to
minimize latency.

3 EXPERIMENTAL FINDINGS
3.1

To expose the opportunities for improvement, we compare our
approach against two modern Kubernetes schedulers: 1) the Hor-
izontal Pod Autoscaler (HPA) [26] as it is the industry-standard
scheduler provided by Kubernetes and 2) a modern research system,
Cilantro [6], which has shown performance benefits when com-
pared to systems such as Quasar [11], Minerva [30], Parties [9], and
other evolutionary algorithms.

HPA is a widely-used default scheduler that automatically adjusts
pod replicas based on current resource usage (such as CPU utiliza-
tion, memory, etc), therefore enabling Kubernetes to scale the num-
ber of pods up and down as demand changes. We follow standard
procedures to create a metrics server [27] API to collect pod resource
usage, which is then pushed into HPA for scaling decisions. Cilantro
is a research system that utilizes a feedback-based online learning
approach for performance aware resource allocation. As a compari-
son point, we replicate Cilantro’s experimental environment for the
hotel reservation benchmark by using its best performing policy,
upper confidence bound (UCB). PAX differs from HPA and Cilantro
by using the patch_namespaced_deployment API call to directly
scale both the of the number of pods and the placement of pods on
specific nodes. Given our use of patch_namespaced_deployment,
the search space of PAX is constrained to place all replicas of a pod
type to a single node. In future we will explore extending Kubernetes
to allow for node placement of per-pod replicas.

Alongside performance, and in order to capture the operational
and embodied carbon differences between the three systems, we
explore two classes of servers in our experiments as shown in table 1.
Server-2014 is an older server with a CPU that was released in
Q3’14 while Server-2021’s CPU was released in Q2°21. The CPU
technology node is also different, 22 nm vs 10 nm, which impacts
its thermal design point (TDP). TDP is an Intel provided metric that

Setup

represents the average power the processor dissipates under load.
Beside these differences, there is a 2X difference in embodied carbon
costs that was calculated using ACT [22]. Lastly, due to the age
differences, there is a price difference of 10X between purchasing a
refurbished Server-2014 and Server-2021.

Our work seeks to expose the performance and TDP differences
between these two servers as a performance and energy trade-
off when deciding how to best scale and schedule pods. Prior re-
search [14, 39] has shown that older hardware remains viable for

Volume 5 Issue 2, July 2025

Name Processor (Intel) | Node | Release | CPUs | TDP (W) | NIC RAM SSD CO2 (kg) Cost
Server-2014 E5-2630 v3 22nm | Q3’14 | 2x16 2x 85 10GbE || 128GB || 480 GB 118.4 $599 [21]
Server-2021 Xeon Silver 4314 | 10 nm | Q2’21 2x32 2x135 40GbE || 256GB || 960 GB 2219 $6080 [5]

Table 1. Different hardware explored.

10000 10000 10000
- HPA s HPA s HPA
—— Cilantro —— Cilantro —— Cilantro
- 8000 e = 8000 T pax - 8000 T pax
€ S €
— 6000 — 6000 — 6000
a > >
5 4000 a 4000WN\W & 40001
9 9 i E’
< 2000 < 20004 <
0 0 ! 0
0 100 200 300 0 100 200 300 0 100 200 300
Time Elapsed (mins) Time Elapsed (mins) Time Elapsed (mins)
(a) 2X-Server-2021 cluster (b) 4X-Server-2014 cluster (c) 2X-Server-2014, 1X-Server-2021 cluster

Fig. 2. Average P99 latency over 5 hours

400 : 400 o

. ’f‘ﬂﬁ‘lmﬁ Mﬂhﬁﬁ?ﬂﬂﬂﬂﬁ%”” A I VI — Cilantro —

0 L T il e 0 0

4}) o

5300 5 2z

S =) 2

> > >

2 2 >

© 200 b]

c | c c

w —— Cilantro w L —— Cilantro

- PAX - PAX
100; 100; 100
0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000
Time Elapsed (seconds) Time Elapsed (seconds) Time Elapsed (seconds)
(a) 2X-Server-2021 cluster (b) 4X-Server-2014 cluster (c) 2X-Server-2014, 1X-Server-2021 cluster
Fig. 3. CPU package power consumption over 5 hours

workloads under certain load conditions and challenges the as- provide a total of 128 allocatable CPUs on a Kubernetes cluster. We

sumption that upgrading to newer server generations is always deploy the same experiment on 4X-Server-2014 nodes (providing

more efficient!. In fact, doing so can lead to increases in embodied the same number of allocatable CPUs). Lastly, we explore how mix-

carbon when functionally working old hardware is prematurely ing old and new hardware impacts all three systems by using a

retired and replaced. Further, extending server lifetimes and reusing cluster consisting of 2X-Server-2014 nodes and 1X-Server-2021

components has been shown to have significantly more impact on node (128 allocatable CPUs). Each server is deployed with Ubuntu

reducing carbon emissions than recycling [28, 38]. As modern cloud 22.04 LTS running Linux kernel 5.15 and Kubernetes v1.28. Similar

applications grow in complexity with multiple interdependent mi- to Cilantro [6], we ran each experiment for over five hours and

croservices, a more hardware aware resource management strategy gather P99 latency as generated by wrk2 load generator. This allows

is needed. PAX promotes an adaptive system where the right hard- us to capture the long-term trend of request latency as each request

ware is used for the right workload and moves cloud infrastructure can interact with multiple sub-services with varying compute costs.

beyond static provisioning and toward carbon-aware scheduling We use Kepler [4] to report the dynamic power consumption on

across heterogeneous systems. each node in the cluster. Kepler uses eBPF probes to gather perfor-
mance counters and other hardware metrics and exposes this data

3.2 Results via Prometheus [2].

We set up a cluster using CloudLab [15]. As baselines, we first deploy Ultimately, in a service-oriented scenario like that modeled by

the hotel reservation benchmark on 2X-Server-2021 nodes, which DeathStarBench, one wants to ensure that most clients (99%) ob-

tain timely responses to their requests (low latency). To alleviate

IDue to advances such as better performance-per-watt

ACM SIGENERGY Energy Informatics Review Volume 5 Issue 2, July 2025

71

Cluster Config System | Avg P99 (ms) | Avg Power (W) | System Avg P99 (ms) | Avg Power (W) | System | Avg P99 (ms) | Avg Power (W)
2X-Server-2021 HPA | 1171 371 Cilantro | 3169 334 PAX | 237 345

[4X-Server-2014 [HPA [1305 [274 [Cilantro | 5188 [235 [PAX [680 [199 |
[2X-Server-2014, 1X-Server-2021 | HPA [994 [321 [Cilantro | 1373 [260 [PAX [193 [238 |

Table 2. Average P99 latency and power at the end of the 5 hour experimental run.

programmer and operator burden, be responsive to changes in de-
mand, and apply to multiple services and compositions of servers,
one would like the system to automatically choose the number of
replicas of each pod type the service is composed of and map those
replicas to the available server CPUs. We view this joint problem as
the scheduling task — jointly choosing the number of pod replicas
and what server they get placed on. The typical approach taken by
Kubernetes decomposes the problem into two independent steps.
The first, a component such as HPA or Cilantro chooses and requests
the number of replicas of each pod type it deems appropriate. The
k8&’s pod scheduler, aware of the servers (nodes) available, creates
the requested number of pod replicas on a particular node. Static
constraints can accompany the creation requests on where the pod
replicas can be placed with respect to the available nodes [25].

The decision space explodes very quickly. As a simple baseline,
to launch p individual pods on n nodes, this configuration space is
on the order of O(nP). In the hotel reservation benchmark, there
are 19 pod types and trying to schedule them on 2 nodes results in
around half a million possible configurations. Assuming 2 minutes is
required to evaluate each configuration, then evaluating all possible
configurations will take around 2 years of compute time. Further,
suppose one were given a budget of 128 CPUs to utilize in a cluster.
In this scenario, the replica of each pod type can grow from a min of
1 to some max value which ensures that the total CPUs used across
all pods does not exceed the 128 CPU budget. The search space will
grow faster with the different number of replicas required. Given
this, previous works have shown that sample efficient techniques
like Bayesian optimization (BO) are well-suited for addressing the
challenges posed by this type of large search space [6, 12, 19].

Below, we evaluate three schedulers: 1) HPA, 2) Cilantro, and 3)
PAX in their net ability to yield a good 99% tail latency (Fig. 2) while
measuring power consumption (Fig. 3). Table. 2 lists the average
results at the end of each experimental run.

3.3 Comparing schedulers

Fig. 2 shows that all three scheduler’s rapidly reduced P99 latency
early in the benchmark. They quickly decided that the one-pod-per-
microservice starting point was insufficient and scaled pod replicas
to improve performance. Fig. 3 illustrates that over the run of the
benchmark, HPA and PAX show more stable power behavior while
Cilantro displays more variance.

Analyzing and comparing Cilantro and HPA’s behaviors helps
motivate PAX’s design. Overall, Cilantro’s UCB algorithm resulted
in the poorest performance. To explain why, Fig. 4 illustrates how
each scheduler’s distribution of pod replicas changes in the first
hour of the benchmark for the mixed cluster?. Each bar represents
the number of pod replicas at a particular moment in time. The

2Similar behavior was seen for the other clusters and the remaining time

ACM SIGENERGY Energy Informatics Review

72

colors are ordered in each bar and each color indicates a distinct
microservice and each color’s size represents the portion of allocat-
able CPUs assigned to the pod. Inspecting Cilantro, we find that it
uses a constant two-minute event timer to reevaluate and select a
new pod configuration (Fig. 4a), and this constant reconfiguration
may contribute to the variance in its power use. In contrast, while
HPA reevaluates configurations even more aggressively (every 15
seconds), it quickly settles on a configuration to which it only makes
minor modifications (Fig. 4b). The stability in configuration that
HPA settles upon results in its ability to satisfy the benchmark re-
quests with an average P99 latency that is 4X lower than Cilantro.
However, this comes at an energy cost as illustrated in Fig. 3.

The above findings lead us to conjecture whether aggressive
reconfiguration is even necessary, as HPA roughly settles on one
configuration for the entire benchmark. Perhaps one just needs to
spend the effort to find a good configuration and then stick to it.
To explore this, PAX adopts a simpler approach by using BO with
a fixed number of trials to find configurations that converge and
minimize tail latency. The best configuration found in these trials
is then used for the remainder of the benchmark. Fig. 4c illustrates
an example of this. Despite the simplicity of this approach, Fig. 2
shows that lowered P99 latency by 5X when compared to HPA
and Cilantro, both of which have the opportunity to adapt over
the entire benchmark run. Clearly, adversarial scenarios could be
devised that would expose PAX’s lack of adaptability. However, the
results are a good starting point for devising a more robust scheme
that intelligently adapts only when needed. Furthermore, PAX’s use
of BO to navigate the more complex joint configuration space opens
the opportunity to exploit hardware heterogeneity, as discussed
next.

3.4 Explicitly Exploiting Hardware Heterogeneity

Given that PAX searches the joint space of pod replicas and their
node placement, it then follows for us to ask what impact there is to
purposefully exploit nodes of different technology generations. To
this end, we evaluate all three scheduling approaches on a mixed
cluster consisting of 2X-Server-2014 and 1X-Server-2021 nodes.

We conjectured that PAX’s design enables it to find interesting
configurations that could spread the pods to the different nodes
in order to exploit tradeoffs in the technology generations. In par-
ticular, can the mixed cluster be used to find a configuration that
cannot be easily found on either homogeneous cluster? While the
results we have found support this conjecture, they are neither com-
plete nor fully explained. Instead, they suggest an avenue for future
exploration.

Before examining PAX with respect to the mixed cluster, we first
compare HPA and Cilantro. On that cluster, HPA obtained a 15%
lowered P99 latency and 15% reduced power when compared to the

Volume 5 Issue 2, July 2025

(a) Cilantro

06

(b) HPA

(c) PAX

Fig. 4. Pod replica scaling on 2X-Server-2014, 1X-Server-2021 cluster.
The colors are ordered and different colors within each bar indicate distinct
pods. The size of each color is representative of the proportion of CPU
resources that each pod has been allocated. For brevity, only the first hour
of the entire experiment is shown. Note, due to complexities of gathering
pod placement data, this graph only shows a coarse-grained sampling.

2X-Server-2021 cluster, and a 31% lowered P99 while using 17%
more power compared to 4X-Server-2014 cluster. This suggests
the mixed cluster contained interesting configuration points that
interpolate between both homogeneous clusters and that HPA was
able to find them by making the slight adjustments as shown in
Fig. 4b.

Interestingly, Cilantro benefited considerably more from the mixed
cluster as it was able to obtain 2.3X lower P99 and 28% lower power
compared to 2X-Server-2021 cluster and 3.78X lower latency and
9% more power compared to 4X-Server-2014 cluster. Fig. 2c also
illustrates another phenomenon where, around 40 minutes into the
experiment, Cilantro seemed to be on track to achieve P99 latency
that is even lower than HPA. However, instead of sticking with this
configuration, Cilantro deviates into another sub-optimal configura-
tion that caused a large increase in its P99 latency. This is different
from the decisions of PAX, which decidedly settled on a performant
configuration for the rest of the experimental run.

In contrast to HPA and Cilantro, which only scale replicas, PAX
bypasses the default Kubernetes scheduler to both scale pod repli-
cas and specify pod-to-node placement that can achieve over 5x
lower P99 latency. However, it is important to note that the current
implementation of PAX crudely uses a fixed trial budget. Given the
initial stochasticity of BO, PAX could have been stuck in a poor
performning local minimum configuration. However, Fig. 2 illus-
trates the benefits of the PAX approach across all three clusters and
suggests that BO was able to approximate an objective function
that is smooth and well structured so as to quickly converge to a
performant configuration for the hotel reservation benchmark.

To shed more light on the nature of the configurations that the
schedulers found on the mixed cluster versus the homogeneous
clusters, we present Table 3 and Table 4. Both tables show snapshots
of a single configuration across all three schedulers taken towards
the end of the experimental run on the 2X-Server-2021 and 2X-
Server-2014, 1X-Server-2021 clusters. The row colors are used to
highlight pods that support similar functions, e.g. reservation service

ACM SIGENERGY Energy Informatics Review

73

HPA Cilantro PAX
Microservice Replicas Node Replicas Node Replicas | Node
consul 1 2021-A 4 2021-B 6 2021-B
frontend 7 2021-A, 2021-B | 4 2021-A, 2021-B [13 2021-A
Jjaeger 1 2021-B 17 2021-A, 2021-B | 14 2021-A
search 6 2021-A, 2021-B|[6 2021-A, 2021-B | 17 2021-A
user 1 2021-A 4 2021-A,2021-B | 1 2021-B
1 2021-B 2 2021-A, 2021-B | 1 2021-B
geo 7 2021-A, 2021-B | 29 2021-A, 2021-B | 4 2021-A
mongodb-geo 1 2021-B 2 2021-A,2021-B || 1 2021-2
profile 7 2021-A, 2021-B | 4 2021-B 7 2021-B
mongodb-profile 1 2021-B 2 2021-A, 2021-B | 1 2021-A
memcached-profile 1 2021-B 7 2021-A, 2021-B || 3 2021-B
_rate 6 2021-A, 2021-B| 4 2021-A, 2021-B | 2 2021-B
mongodb-rate 1 2021-B 2 2021-A,2021-B || 1 2021-B
memcached-rate 2 2021-A, 2021-B| 4 2021-A 1 2021-B
recommendation 6 2021-A, 2021-B | 5 2021-A, 2021-B || 16 2021-B
mongodb-recommendation | 1 2021-A 2 2021-A, 2021-B || 1 2021-B
reserve 6 2021-A, 2021-B| 5 2021-A, 2021-B | 10 2021-B
mongodb-reserve 2 2021-A, 2021-B| 2 2021-A, 2021-B | 1 2021-A
hed-reserve 2 2021-A, 2021-B| 8 2021-A, 2021-B | 26 2021-A

Table 3. A snapshot towards the end of experimental run of the pod replicas
and their node placement in the 2X-Server-2021 cluster. 2021-A and 2021-B
refer to distinct 2021 servers in the cluster.

HPA Cilantro PAX
Microservice Replicas Node Replicas Node Replicas | Node
consul T 2021A 20 2014-A, 2014-B, 2021-A | 10 2014-A
frontend 7 2014-A, 2014-B, 2021-A || 10 2014-A, 2014-B, 2021-A 5 2014-A
Jacger T 2021A 9 2014-A, 2014-B, 20214 | 10 20148
search 6 2014-A, 2014-B, 2021-A || 5 2014-A, 2014-B, 2021-A [1 2021-A
user 1 2021-A 5 2014-A, 2014-B, 2021-A [3 2014-B
1 2014-A 3 2014-A, 2014-B, 2021-A [1 2014-B
geo 7 2014-A, 2014-B, 2021-A | 7 2014-A, 2014-B, 2021-A | 15 2014-B
db-g 1 2014-A 3 2014-A, 2014-B, 2021-A [1 2014-A
profile 7 2014-A, 2014°B, 2021A | 4 2014-B, 2021A 1 2014A
mongodb-prome 1 2021-A 3 2014-A, 2014-B, 2021-A | 1 2014-A
memcached-profile 1 2021-A 7 2014-A, 2014-B 26 2021-A
rate 6 2014-A, 2014-B, 2021-A [4 2014-A, 2014-B, 2021-A [2 2014-A
mongodb-rate 1 2014-B 3 2014-A, 2014-B, 2021-A | 1 2014-B
memcached-rate 2 2014-B, 2021-A 6 2014-A, 2014-B, 2021-A | 19 2014-B
dati 6 2014-A, 2014-B, 2021-A [8 2014-A, 2014-B, 2021-A [12 2014-A
db dation | 1 2014A 3 2014-A, 2014-B, 2021-A | 1 20148
Teserve 6 2014-A, 2014-B, 20214 3 2014-A, 2014, 2021-A [8 2021A
db ve 1 2021-A 3 2014-A, 2014-B, 2021-A [1 2014-A
hed ve 2 2014-B, 2021-A 7 2014-A, 2014-B 1 2014A

Table 4. Pod replicas and their node placement in the 2X-Server-2014, 1X-
Server-20221 cluster. 2014-A and 2014-B refer to distinct 2014 servers and
2021-A is the 2021 server.

that contains both a MongoDB and Memcached component. Note
that while HPA and PAX’s configurations are stable for the majority
of the experimental run, a snapshot towards the end is representative
of its the best performing configuration. However, this is unclear
for Cilantro due to its constant 2 minute reconfiguration window.

Interestingly, we find that HPA did not fully utilize all 128 CPUs as
it only scaled up certain pods up toward a limit of 6 or 7, indicating
a more conservative policy. However, HPA was still able to outper-
form Cilantro. We hypothesize that this is partly due to Cilantro
constantly changing reconfigurations. These results also reveal a
limitation of HPA: it does not provide interfaces to specify a CPU
budget, and these tables show that PAX was able to aggressively
scale up similar pods as HPA and achieve even better performance.
Further, as pod replicas are scaled up by HPA and Cilantro, Ta-
ble 3 and Table 4 illustrate the default behavior of the Kubernetes
scheduler as it will try to spread the pods amongst available nodes.
This behavior is different in PAX as it both scales replicas and by-
passes Kubernetes to place these replicas on a single node. Table 3
and Table 4 also reveal that Cilantro and PAX found different pod
replica counts for both hardware clusters, which underscores the
design of both systems to adapt to their operating environment
while optimizing for end-to-end latency.

Our preliminary analysis does not provide a definitive explanation
for why the mixed cluster out performs the homogeneous clusters.
However, combining Table 3 and Table 4 with experimental data in

Volume 5 Issue 2, July 2025

Fig. 2 and Fig. 3 clearly highlights new opportunities for future work
to systematically explore and quantify these behaviors in order to
better promote hardware reuse and improve system sustainability.
It should be noted that there is a large and complex configuration
space and our work highlights the need for further ablation studies.
Our results also suggest a systematic and manual path that one can
take in a comprehensive study to investigate this phenomenon by
conducting manual grid searches by slowly perturbing both bad
and good configurations. Other approaches include profiling to find
interesting underlying dependency behavior between microservices
or fine-grained introspection on the BO process to unravel important
tunable parameters.

4 DISCUSSION

In this paper, we have used a single hotel reservation benchmark to
reveal performance and power efficiency opportunities in Kuber-
netes resource allocation. There is still a need to validate that the
same results hold for the other suite of benchmarks from Death-
StarBench [18]. Further, the full potential of leveraging black-box
tuning for this resource reallocation task is to explore it under the
context of a multi-tenant setting which consists of different applica-
tions running multiple microservices across a heterogeneous cluster
with different hardware types. One of the main benefits of the BO
approach is that it can converge to its optimization objective in
relatively few iterations.

Expanding on this further, ablation studies need to be done to
quantify the benefits of BO under more performance metrics such as
P50, and P90, as well as alongside different carbon metrics other than
power consumption. Besides BO, the ax-platform provides a suite of
other black-box tuning algorithms [3]. A study of these algorithms
should yield interesting results of how they perform distinctly un-
der differing application requirements and single vs multi-tenant
settings or performance and/or power efficiency objectives.

We have demonstrated the utility of PAX using somewhat sim-
plistic objectives such as P99. However, the possibilities of customiz-
ing these objectives further is ripe for exploration, e.g. using new
combinations of performance/energy or known metrics such as
energy-delay-product [7, 24]. One can also imagine developing a
rich set of objectives that capture preferences that a service operator
might have. In this way, PAX can be reconfigured as application
priorities change.

There is also a need to quantify how PAX behaves in unpredictable
environments such as unexpected load spikes or changing patterns
of workloads. Cilantro tries to address this via its uncertainty-aware
design and using 2 minute triggers for reallocation to dynamically
adjust to changing loads. However, our results illustrate the perfor-
mance limitation of this approach. To address this, one can use tech-
niques such as maintaining a running window of average load that
acts as triggers for the learning phase or provides simple heuristics
(such as HPA) as a fallback when extreme fluctuations in load ap-
pear. Recent studies of certain data center applications [37, 40] have
also shown that they experience repetitive mean demand curves
which gradually change in offered loads over extended periods,
ranging from hours to days. Such stability arises from recurring

ACM SIGENERGY Energy Informatics Review

74

diurnal patterns and the use of load balancers [33, 40]. This sug-
gests that learning phases can leverage historical usage patterns to
strategically select when to do pod reallocation.

4.1

The ax-platform also provides an experimental feature [1] for multi-
objective optimization (MOO) [3]. As an example, MOO can op-
timize both P99 latency and power at the same time. This is an-
other interesting avenue to explore as one scenario can involve
setting up a larger experimental cluster, such as 4X-Server-2014
and 2X-Server-2021 nodes (256 CPUs altogether) and utilize MOO
to investigate if it could allocate 128 CPUs from this cluster and
find a configuration of pods and nodes that outperformed the re-
sults in Table 2 while using the least energy (either by reducing the
number of nodes it used or through strategic placement of pods on
power-efficient nodes). We believe the potential for MOO can be
further extended to optimize for other scenarios such as various
proxy metrics, applications with service-level objectives (SLO), and
for multi-tenant applications that have diverging requirements. Ex-
posing MOO to end users also opens up interesting systems design
challenges such as creating interfaces that enable the intuitive spec-
ification of multiple, potentially conflicting, optimization criteria.

Multi-Objective Optimization

5 CONCLUSION

In this work, we presented PAX, a performance and energy aware
Kubernetes scheduler designed to optimize microservice placement
in heterogeneous clusters. PAX integrates black-box Bayesian opti-
mization to learn scheduling policies that account for diverse hard-
ware. Our results highlight a largely untapped opportunity at the
intersection of cluster scheduling and sustainability: by leveraging
existing underutilized hardware and aligning workload demands
with server capabilities, data centers can reduce carbon emissions
without sacrificing performance.

6 ACKNOWLEDGMENTS

We would like to thank our shepherd Monica Vitali for help in
preparing the final version. This work was supported by the Red Hat
Collaboratory at Boston University under the award Red Hat Col-
laboratory Research Incubation Award, Discovering Opportunities
for Optimizing OpenShift Energy Consumption, #2024-01-RH04.

REFERENCES

[1] 2025. [GENERAL SUPPORT]: Getting extremely slow in multi-objective opti-
mization 2859. https://github.com/facebook/Ax/issues/2859. [Accessed April 28,
2025].

2025. Prometheus. https://prometheus.io/. [Accessed April 27, 2025].

2025. Welcome to Ax Tutorials. https://ax.dev/docs/tutorials/. [Accessed April
28, 2025].

Marcelo Amaral, Huamin Chen, Tatsuhiro Chiba, Rina Nakazawa, Sunyanan
Choochotkaew, Eun Kyung Lee, and Tamar Eilam. 2023. Kepler: A Framework
to Calculate the Energy Consumption of Containerized Applications. In 2023
IEEE 16th International Conference on Cloud Computing (CLOUD). 69-71. https:
//doi.org/10.1109/CLOUD60044.2023.00017

AvaDirect. 2025. Supermicro SuperServer SYS-220P-C9R. https://www.avadirect.
com/Supermicro-SuperServer-SYS-220P- COR-T-3rd- Generation- Intel- Xeon-
Scalable-Processors-SATA-SAS-2U-Rackmount-Server-Computer/Configure/
14501891?srsltid=AfmBO0oTmHNQR4nu94ErwmC6sRPkBCnuNKcQxr-
gJBNzDOTPLSI8j4MM [Accessed May 18, 2025].

Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo Guo, Ben-
jamin Hindman, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2023. Cilantro:

—_—r—
A

4

[5

G

Volume 5 Issue 2, July 2025

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

Performance-Aware Resource Allocation for General Objectives via Online
Feedback. In 17th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 23). USENIX Association, Boston, MA, 623-643. https:
//www.usenix.org/conference/osdi23/presentation/bhardwaj

David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson, Prabhakar N.
Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor Zyuban, Manish
Gupta, and Peter W. Cook. 2000. Power-Aware Microarchitecture: Design and
Modeling Challenges for Next-Generation Microprocessors. IEEE Micro 20, 6
(Nov. 2000), 26-44. https://doi.org/10.1109/40.888701

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes. Commun. ACM 59, 5 (April 2016), 50-57.
https://doi.org/10.1145/2890784

Shuang Chen, Christina Delimitrou, and José F. Martinez. 2019. PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 107-120. https://doi.org/10.1145/
3297858.3304005

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,
153-167. https://doi.org/10.1145/3132747.3132772

Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association for Computing Ma-
chinery, New York, NY, USA, 127-144. https://doi.org/10.1145/2541940.2541941
Yi Ding, Alex Renda, Ahsan Pervaiz, Michael Carbin, and Henry Hoffmann.
2022. Cello: Efficient Computer Systems Optimization with Predictive Early
Termination and Censored Regression. https://doi.org/10.48550/ARXIV.2204.
04831

Yi Ding and Tianyao Shi. 2024. Sustainable LLM Serving: Environmental Impli-
cations, Challenges, and Opportunities : Invited Paper . In 2024 IEEE 15th Interna-
tional Green and Sustainable Computing Conference (IGSC). IEEE Computer Society,
Los Alamitos, CA, USA, 37-38. https://doi.org/10.1109/IGSC64514.2024.00016
Han Dong, Sanjay Arora, Orran Krieger, and Jonathan Appavoo. 2024. Can OS
Specialization give new life to old carbon in the cloud?. In Proceedings of the
17th ACM International Systems and Storage Conference (Virtual, Israel) (SYSTOR
"24). Association for Computing Machinery, New York, NY, USA, 83-90. https:
//doi.org/10.1145/3688351.3689158

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig,
Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink,
Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and
Operation of CloudLab. In Proceedings of the USENIX Annual Technical Conference
(ATC). 1-14. https://www.flux.utah.edu/paper/duplyakin-atc19

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power Pro-
visioning for a Warehouse-Sized Computer. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (San Diego, California, USA)
(ISCA °07). Association for Computing Machinery, New York, NY, USA, 13-23.
https://doi.org/10.1145/1250662.1250665

Peter 1. Frazier. 2018. A Tutorial on Bayesian Optimization.
arXiv:1807.02811 [stat.ML] https://arxiv.org/abs/1807.02811

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge Sys-
tems. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)
(ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 3-18.
https://doi.org/10.1145/3297858.3304013

Roman Garnett. 2022. Bayesian Optimization. Cambridge University Press. in
preparation.

Gil Tene. 2024. wrk2: a HTTP benchmarking tool based mostly on wrk. https:
//github.com/giltene/wrk2 [Accessed Oct 22, 2024].

GizmoGenie. 2025. CISCO UCS C220 M4 2x INTEL XEON E5-2630 V3
2.4 GHz 128 GB RAM. https://www.ebay.com/itm/175458691943?
chn=ps&mkevt=1&mkcid=28&srsltid=AfmBOogD-uwgiywqgtDR _
UmNS5ID80j0TxnQjduCpkl273GXgMxkRIF50hU82 [Accessed May 18, 2025].
Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David
Brooks, and Carole-Jean Wu. 2022. ACT: designing sustainable computer systems
with an architectural carbon modeling tool. In Proceedings of the 49th Annual

ACM SIGENERGY Energy Informatics Review

(23]

[24]

[25]
[26]
[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

[39]

[40]

International Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 784-799. https:
//doi.org/10.1145/3470496.3527408

Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon
Wei, David Brooks, and Carole-Jean Wu. 2020. Chasing Carbon: The Elusive
Environmental Footprint of Computing. arXiv:2011.02839 [cs.AR]

M. Horowitz, T. Indermaur, and R. Gonzalez. 1994. Low-power digital design.
In Proceedings of 1994 IEEE Symposium on Low Power Electronics. 8-11. https:
//doi.org/10.1109/LPE.1994.573184

Kubernetes. 2025. Assigning Pods to Nodes. https://kubernetes.io/docs/concepts/
scheduling-eviction/assign-pod-node/ [Accessed June 24, 2025].

Kubernetes. 2025. Horizontal Pod Autoscaling. https://kubernetes.io/docs/tasks/
run-application/horizontal-pod-autoscale/ [Accessed April 27, 2025].
Kubernetes. 2025. Resource metrics pipeline. https://kubernetes.io/docs/tasks/
debug/debug-cluster/resource-metrics-pipeline/. [Accessed April 27, 2025].
Jialun Lyu, Jaylen Wang, Kali Frost, Chaojie Zhang, Celine Irvene, Esha Choukse,
Rodrigo Fonseca, Ricardo Bianchini, Fiodar Kazhamiaka, and Daniel S. Berger.
2023. Myths and Misconceptions Around Reducing Carbon Embedded in Cloud
Platforms. In Proceedings of the 2nd Workshop on Sustainable Computer Systems
(Boston, MA, USA) (HotCarbon "23). Association for Computing Machinery, New
York, NY, USA, Article 7, 7 pages. https://doi.org/10.1145/3604930.3605717
Meta Platforms, Inc. 2025. Adaptive Experimentation Platform. https://ax.dev
[Accessed April 27, 2025].

Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichandra Addanki, Mehrdad
Khani, Prateesh Goyal, and Mohammad Alizadeh. 2019. End-to-end transport
for video QoE fairness. In Proceedings of the ACM Special Interest Group on Data
Communication (Beijing, China) (SIGCOMM ’19). Association for Computing Ma-
chinery, New York, NY, USA, 408-423. https://doi.org/10.1145/3341302.3342077
Nicola Jones. [n.d.]. How to stop data centres from gobbling up the world’s
electricity. https://www.nature.com/articles/d41586-018-06610-y.

David Patterson, Joseph Gonzalez, Urs Hélzle, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2022. The
Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink.
arXiv:2204.05149 [cs.LG] https://arxiv.org/abs/2204.05149

Rajesh Nishtala and Hans Fugal and Steven Grimm and Marc Kwiatkowski and
Herman Lee and Harry C. Li and Ryan McElroy and Mike Paleczny and Daniel
Peek and Paul Saab and David Stafford and Tony Tung and Venkateshwaran
Venkataramani. 2013. Scaling Memcache at Facebook. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and Implementation (NSDI
13). USENIX, Lombard, IL, 385-398. https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/nishtala

Brian Ramprasad, Alexandre da Silva Veith, Moshe Gabel, and Eyal de Lara.
2021. Sustainable Computing on the Edge: A System Dynamics Perspective. In
Proceedings of the 22nd International Workshop on Mobile Computing Systems and
Applications (HotMobile *21). Association for Computing Machinery, 64-70.

Red Hat. 2025. Red Hat Emerging Technologies. https://next.redhat.com/projects-
full/ [Accessed June 23, 2025].

Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and Policy
Considerations for Deep Learning in NLP. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics. Association for Computational
Linguistics, Florence, Italy, 3645-3650. https://doi.org/10.18653/v1/P19-1355
Chungiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott
Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew Clark, Kabir Gogia,
Long Cheng, Ben Christensen, Alex Gartrell, Maxim Khutornenko, Sachin Kulka-
rni, Marcin Pawlowski, Tuomas Pelkonen, Andre Rodrigues, Rounak Tibrewal,
Vaishnavi Venkatesan, and Peter Zhang. 2020. Twine: A Unified Cluster Manage-
ment System for Shared Infrastructure. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 787-803.
https://www.usenix.org/conference/osdi20/presentation/tang

Jaylen Wang, Daniel S. Berger, Fiodar Kazhamiaka, Celine Irvene, Chaojie Zhang,
Esha Choukse, Kali Frost, Rodrigo Fonseca, Brijesh Warrier, Chetan Bansal,
Jonathan Stern, Ricardo Bianchini, and Akshitha Sriraman. 2024. Designing
Cloud Servers for Lower Carbon. In 2024 ACM/IEEE 51st Annual International
Symposium on Computer Architecture (ISCA). 452-470. https://doi.org/10.1109/
ISCA59077.2024.00041

Jaylen Wang, Udit Gupta, and Akshitha Sriraman. 2023. Peeling Back the Carbon
Curtain: Carbon Optimization Challenges in Cloud Computing. In Proceedings of
the 2nd Workshop on Sustainable Computer Systems (Boston, MA, USA) (HotCarbon
’23). Association for Computing Machinery, New York, NY, USA, Article 8, 7 pages.
https://doi.org/10.1145/3604930.3605718

Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis of hundreds
of in-memory cache clusters at Twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 191-208.
https://www.usenix.org/conference/osdi20/presentation/yang

Volume 5 Issue 2, July 2025

