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ABSTRACT

Simulations play a vital role in the understanding and analysis of existing and emerging medical imaging tech-
nologies. Over the last years, Monte Carlo simulations have become increasingly necessary tools for studying the
fundamental limitations and for the design and optimization of medical imaging systems. We compare available
open-source software packages from the Division of Imaging and Applied Mathematics at the FDA for modeling
scintillator- and semiconductor-based radiation imaging detectors for applications in x-ray and nuclear imaging
including mantis, hybridmantis, cartesiandetect2, and artemis. We describe the significant features of these
packages and discuss their advantages or disadvantages. We also introduce a graphical user interface which
greatly facilitates the set up of simple experiments involving scintillator structures with columnar geometries.

1. MONTE CARLO TRANSPORT CODES

We summarize the main features and compare open-source packages for Monte Carlo modeling of scintillator-
and semiconductor-based detectors developed and made available by the Division of Imaging and Applied Math-
ematics (OSEL/CDRH/FDA).

1.1 mantis

mantis1 (Monte Carlo x-rAy, electroN and opTical Imaging Simulation tool) is a package for modeling radiation
imaging detectors including x-ray, electron and optical photon transport. mantis uses penelope 20062 for the
x-ray and electron transport and detect2 for the optical transport. detect2 is a Monte Carlo simulation code
for the study of light transport processes in scintillator structures including surface reflection or refraction based
on Snell and Fresnel formulae, absorption and scattering, and surface roughness. Although publicly available
(code.google.com/p/mantismc/), mantis is no longer actively supported.

1.2 hybridmantis

hybridmantis3,4 is a modified version of mantis with significant speed improvements. It uses penelope for
x-ray and electron transport and fastdetect2 for the optical photon transport. hybridmantis uses a novel
hybrid concept to run x-ray/electron transport in parallel with the optical transport using CPUs and GPUs.
A modified penEasy5 program outputs energy deposition events. This information is used by fastdetect2 to
sample the number of optical photons. Notable new features introduced in hybridmantis include on-the-fly
geometry and columnar crosstalk (CCT).

On-the-fly geometry allows for columns to be modeled dynamically instead of stored in memory (as done in
mantis) for large-area detectors. Because every column is modeled on the fly, columns can have randomness
(including shape, size, tilt angle). CCT allows photons to cross over to adjacent columns without undergoing
reflection or refraction at the column boundaries. The current version of hybridmantis defines a linear CCT
profile with depth.

Due to the use of hybrid concept, on-the-fly geometry and multi-architecture utilization, hybridmantis is
typically 600 times faster than mantis (code.google.com/p/hybridmantis/).
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Figure 1. Graphical user interface (GUI) for hybridmantis. (a) Main screen showing the pulse height spectrum, optical
photon track overlay on top of actual columnar geometry, and point response function (left to right). At the bottom,
output display including the optical transport statistics (number of photons generated, detected, absorbed, etc.) and
simulation speed. (b) Input window for the optical transport parameters.

(a) (b)

Figure 2. (a) Top-view SEM of a thick CsI:Tl film (courtesy of RMD Inc). (b) Point responses for a pixelated scintillator.

1.3 visualmantis

We have developed a graphical user interface (GUI) for hybridmantis to facilitate the set up of computational
experiments and to provide real-time visualizations (code.google.com/p/hybridmantis/). The tool is built
using OpenGL6 and Fast Light Toolkit (FLTK).7 OpenGL provides interactive visualization while FLTK helps
configuring the GUI. The code output consists of the point response function (PRF) image (detected photons
at the sensor plane) and pulse height spectra (PHS), updated while a simulation takes place in the GPU. The
tool allows the user to view several optical photon tracks through the detector columns, enabling the user to
visualize a particular number of histories (which the user inputs in the Options window), starting from the first
history. The user can also visualize how the columns are getting built and photons transported (see Fig. 1).

1.4 cartesiandetect2

cartesiandetect2 (code.google.com/p/cartesian-detect2/) is a dedicated Monte Carlo optical transport
tool available especially for pixelated detector structures used in PET and SPECT imaging8,9 (see Fig. 2). Some
unique features include the physics of detect2 and columns identified by their x and y position indices not
stored in memory.
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Figure 3. (a) Two-dimensional illustration of processes related to the creation and transport of electron-hole pairs. Re-
combination is represented with circles containing an electron and a hole.11 (b) Flow chart for the simulation of signal
formation process in semiconductor x-ray detectors. For details, see Ref. 11.

1.5 artemis10

artemis11 (pArticle transport, Recombination, and Trapping in sEMiconductor Imaging Simulations) is a Monte
Carlo package for x-ray, electron, and electron-hole pair (ehp) transport. X-ray and secondary electron interac-
tions in the presence of an electric field are modeled by penelope, and the locations of inelastic electron interac-
tions are coupled in space and time to the transport routine for ehp simulation (code.google.com/p/artemis/,
see Fig. 3).

Major elements of the simulation code include:

• Number of ehp calculated from Poisson distribution as a function of energy deposition and ionization
energy.

• Energy deposited divided equally among the created ehp, and thermalization separation distance calculated.

• The burst radius is a function of the electron velocity, and in conjunction with the thermalization distance,
generates a distribution of ehp.

• The applied bias and coulomb field between carriers are taken into account along with electron and hole
mobilities, and carrier drift and diffusion.

2. DISCUSSION

Table 1 presents a comparison of the main features of indirect detector modeling codes. The codes presented
in this paper have different degrees of validation work associated with them. Most notably, mantis has been
validated against experimental measurements for four different CsI screens with a variety of thicknesses and
substrates.12 In addition, hybridmantis has been compared to previously published experimental and mantis
data on detector response functions13 and has been found to match the experimental results better than mantis
for most screen designs. Finally, artemis preliminary Swank factor results have been compared to experimental
measurements from Blevis et al.14 Simulated and experimental Swank factors are within approximately 2%.

Although these tools are already publicly available, a comparative review of the codes is currently not available
in the literature. The comparison presented in this paper might help users select the right package for their
application and understand their advantages and disadvantages. We also introduce the new visualization tool
for hybridmantis which will greatly facilitate the setup of simple computational experiments.
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Table 1. Comparative table with timings and main features of the Monte Carlo simulation codes described in this paper
for the modeling of indirect x-ray imaging detectors.

mantis hybridmantis cartesiandetect2

General features

GPU-accelerated No Yes No
GUI No Yes In preparation
Free download code.google.com code.google.com code.google.com/p/

/p/mantismc/ /p/hybridmantis/ cartesian-detect2/

Optical transport

Code detect2 fastdetect2 cartesiandetect2
On-the-fly geometry No Yes Yes
Columnar crosstalk No Yes No
Rayleigh scattering Yes No No
Wavelength effects Yes No No
Polarization Yes No No
Optical sensor Non-ideal Non-ideal Ideal
Language Fortran C, CUDAa C

Timings

Code mantis hybridmantis cartesiandetect2
Total timeb 277:46:12c 00:26:43d 55:00:55c

Speed (x-ray hist/sec) 1 627 5e

a A parallel programming model developed by NVIDIA R© Corporation.
b Timings for 106 histories for a 909×909×150 µm3 detector.3

c Using 1 core of Intel R© Xeon R© E5410 CPU.
d Using 1 core of Intel R© Core i7 920 CPU and an NVIDIA R© GeForce GTX 580 GPU.
e Estimated based on equivalent runs for diagnostic x rays (only optical).

3. CONCLUSION

We describe and compare various publicly available Monte Carlo transport codes from the Division of Imaging
and Applied Mathematics at the FDA for modeling radiation imaging detectors and list features available for each
of them. This comparison can help users get an overview of these codes and choose the right software package
for their research problem. We also introduce a visualization and graphical user interface for the hybridmantis
package that can aid the setting up of computational experiments. These software packages are essential tools
for the understanding the underlying physical processes in imaging systems and for the development of future
medical imaging products.
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