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Abstract—The wide use of microbloggers such as Twitter
offers a valuable and reliable source of information during
natural disasters. The big volume of Twitter data calls for a
scalable data management system whereas the semi-structured
data analysis requires full-text searching function. As a result, it
becomes challenging yet essential for disaster response agencies
to take full advantage of social media data for decision making
in a near-real-time fashion. In this work, we use Lucene
to empower HBase with full-text searching ability to build
a scalable social media data analytics system for observing
and analyzing human behaviors during the Hurricane Sandy
disaster. Experiments show the scalability and efficiency of the
system. Furthermore, the discovery of communities has the
benefit of identifying influential users and tracking the topical
changes as the disaster unfolds. We develop a novel approach to
discover communities in Twitter by applying spectral clustering
algorithm to retweet graph. The topics and influential users of
each community are also analyzed and demonstrated using
Latent Semantic Indexing (LSI).

Keywords-Hadoop; HBase; Lucene; Twitter; Hurricane
Sandy

I. INTRODUCTION

In the event of natural disasters, social media or net-
working services usually take precedent as the main form
of communication for emergencies or evacuation news. As
evidenced in the Great East Japan Earthquake of March
2011, web-enabled smartphones served as the primary in-
formation channel for communication [1]. Hurricane Sandy
was considered to be the second-costliest hurricane in United
States, which affected much of the east coast from October
22, 2012 to October 30, 2012. Social media can play a
significant role in disseminating vital information and serve
as a pool of information for understanding public sentiment
during natural disasters [2]. Our approach differs from [2]
in that we use HBase to store the data in a distributed data
management system rather than in a centralized way.

Typical examples of social media include Twitter,
Google+ and Facebook etc. In this work, we focus on
the Twitter as it has a significantly large user base as
well as an API for extracting data. “Big social data” has
become a global phenomenon and has grown in complexity
in terms of volume (terabyte to petabyte), variety (structured
and un-structured), and velocity (high speed) in nature.

Computational and storage requirements of applications such
as Business Intelligence (BI), and social networking analyt-
ics have led to the development of horizontally scalable,
distributed non-relational data stores like “Not only SQL”
(NoSQL) databases [3].

HBase, one member of NoSQL databases, is built on top
of Hadoop and consists of the following two components:
Hadoop Distributed File System (HDFS), an open source
implementation of Google File System (GFS), and a pow-
erful parallel processing framework in MapReduce. While
the benefits of HBase involve availability, scalability and
load balancing, it has less querying capability and often
weaker consistency guarantees [4]. For example, HBase does
not support full-text searching; current implementation of
HBase only offers the rowkey-based indexing. As a result,
performance could be degraded significantly when querying
on column fields that are not indexed by the rowkey. In
Twitter, we care about the author, time, location and content
of the tweets for analysis. The former three attributes are
well-defined in our HBase table schema, while the un-
structured content requires full-text searching power.

Lucene [5] is an open-source Apache sub-project, which
provides mature Java-based indexing and searching tech-
nology. Lucene has been applied into numerous success-
ful search engines such as Apache Nutch [6], Solr [7],
ElasticSearch [8] etc. Lucene uses inverted indexes and is
comparable with sequential indexes. Sequential indexes map
from documents to words whereas inverted indexes maps
from word to document. Accordingly, given a keyword, one
can easily find all the related documents containing the
keyword simply by looking up Lucene index.

Discovering communities in the context of social media
during disasters can help tracking topical changes, iden-
tifying influential factor, and detecting the evolvement of
communities. Such information benefits relevant agencies to
respond in a real-time way. The discovery of communities
resembles graph clustering problems. We are looking for
graph cuts so that links with members in the same com-
munity are dense while links among members of different
communities are sparse. Nodes are linked if there is a
relationship between them, weighted edges represent their
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similarities. Typical metrics for constructing this similarity
graph include social connections, tweet content similarities,
mentions, and descriptions content similarity [9].

The motivation of our work comes from the spatial
and temporal characteristics of disasters. Social media data
analytics involve multidimensional queries, which specify
a particular location, time and content to reach a finer
understanding of human behaviors in the face of disasters.
We build Lucene index layer on top of HBase to retrieve
relevant data in a near-real-time manner for analysis. Such a
prototype can be employed in similar social media analytics
that require multidimensional analysis. However, we are
currently not aiming at stream processing of Tweets with
a system like Apache Storm [10].

The rest of the paper is organized as follows. Section
II is related work. An overview of our proposed scalable
data analytics system is described in Section III. Section
IV presents details about building Lucene index on top of
HBase. Section V demonstrates the scalability of our system.
Section VI focuses on community discovery in Hurricane
Sandy using spectral clustering followed by discussion and
conclusion in Section VII and Section VIII.

II. RELATED WORK

Existing solutions to use Lucene to support full-text
searching for HBase include HBasene [11], Lily [12], and
IHBase [13]. HBasene is a distributed system that uses
HBase as the backing store for the TF-IDF representa-
tion. HBasene aims at combining HBase with Lucene by
modifying HBase APIs. Lily is a data management system
combining planet-size data storage, indexing and search
with online, real-time usage tracking, audience analytics
and content recommendations. It relies on Solr as the index
engine and stores data in HBase. IHBase stores indexes in
memory, which might not be suitable for large table sets.
Gao uses MapReduce to build Lucene index on HBase and
stores indices in a HBase table [14]. In this paper, we use
MapReduce to directly build Lucene index for HBase tables
and store the indices on HDFS where queries are searched
against the indices copied to local file system from HDFS.

In literature, five broad classes of community detection
are considered: (a) cohesive subgraph discovery [15], (b)
vertex clustering, (c) community quality optimization [16],
(d) divisive [17], and (e) model-based [18]. In this paper, we
take the vertex clustering approach, which is a typical means
of casting a graph vertex clustering problem to one that
can be solved by conventional data clustering methods [19].
We first construct a similarity matrix by retweets, then
apply spectral clustering to the matrix to discover different
communities. The reason for using retweet as the similarity
relationship lies in the fact that retweets inherit the dynamic
and temporal features of a disaster; traditional metrics such
as social connections fail to capture such characteristics. In
addition, retweet also reflects the trust between two people.
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Figure 1. Architecture of the scalable data analytics system
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Figure 2. Data analytics flow

III. SYSTEM OVERVIEW

Figure 1 shows the architecture of our scalable data
analytics system while Figure 2 shows the data analytics
flow. The first layer is the twitter search API followed by
data storage layer where twitter data are collected and stored
in HDFS. We import the data collected using twitter search
API into one HBase table called Twitter. The third layer is
the index layer where Lucene provides the full-text searching
capacity to HBase. Raw HBase and Hadoop APIs are used
to build Lucene index for Twitter using MapReduce. The
fourth layer is the search engine, where the client can issue
queries against the Twitter table in multiple dimensions.
Multidimensional queries such as “location:NYC and time:
Oct 28 to 31 and content: evacuate” are answered within
milliseconds.

To evaluate the performance of our system, the following
four components should be taken into consideration: (1)
indexing, (2) searching, (3) clustering, (4) Latent Semantic
Indexing (LSI). To improve the indexing time, we rely on
MapReduce to build Lucene index for Twitter. The end-user
will then issue multidimensional queries to fetch data at a
particular location, in a particular time and with particular
keywords. The shorter the query response time, the better
the performance. The query results serve as the input for
clustering. After we identify the communities, LSI is applied
to each community to identify the topic. As New York City
(NYC) suffered most during Hurricane Sandy on October
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29, 2012, we focus on analyzing twitter communities in
NYC to understand public reactions, the evolvement of
communities, and identify the most influential users.

IV. LUCENE INDEX FOR HBASE

HBase is similar to BigTable [20], which is a distributed,
fault-tolerant, highly-scalable, NoSQL database for large
volumes of heterogeneous data. The data model in HBase is
similar to the one used by BigTable, which organizes data
in tables, rows and columns. Each table is composed of
millions of rows; each row, identified by a unique rowkey,
consists of various number of column families, where each
column family may have arbitrary number of columns. Table
I illustrates the SandyTwitter data schema. SandyTwitter
is built by searching Twitter table for retweets related to
Hurricane Sandy.

Table I
SANDYTWITTER TABLE SCHEMA. ROWKEY IS COMPOSED BY AUTHOR,
LOCATION AND TIME. CF IS THE ONLY COLUMN FAMILY. TARGET IS

THE ORIGINAL AUTHOR OF A RETWEET

Rowkey Cf:author Cf:location Cf:time Cf:content Cf:target

Physically, HBase tables are stored in HDFS files in a dis-
tributed manner. These tables are automatically partitioned
horizontally by HBase into regions. Each region comprises a
subset of the table. In addition, HDFS replicates the HBase
tables to prevent the data loss due to node failures.

Logically, rowkey is used to address all columns in one
single row, and it is sorted to speed up searching; column key
is the combination of a column family name and a column
qualifier. Table name, rowkey, and column key together with
the timestamp define a cell in the table. In order to access
the data, the rowkey must be provided to retrieve the cell.

Lucene indexes are composed by searchable entities rep-
resented as documents including field and value pairs. In
addition, Lucene supports multiple query features, like wild
card query, range query, and customized parsers. To speed
up the indexing of HBase tables, we utilize MapReduce to
parallelize the computation. Indexing an HBase table is an
embarrassingly parallel task. Each mapper reads rows from
the table stored in the corresponding regionserver. Each row
from HBase table is indexed into a lucene document with
each column stored in the corresponding lucene field. As
soon as a mapper completes its job, the index folder is copied
to a directory in HDFS.

V. EXPERIMENTAL RESULTS OF BUILDING LUCENE

INDEX

We designed a set of experiments to test the scalability and
efficiency of the system. The 4 sets of clusters using Amazon
Elastic Compute Cloud (Amazon EC2) were built. Each
cluster consisted of 1, 4, 8, and 12 nodes separately, using

Amazon EC2 general purpose m1.medium instance which
has 64 bit Intel Xeon processor, 1 vCPU, 2 ECUs, 3.75GB
memory, and 160GB HDD. These instances launched into
the same cluster placement group were placed into a non-
blocking 10 Gigabit Ethernet network. We installed 64-bit
Ubuntu Server 12.04.3 LTS with Oracle Java 7, Hadoop
1.0.4, HBase 0.94.0 and Zookeeper 3.4.3.

We have collected 50GB twitter data. However, it took
about 2.5 hours to import 6GB data into Amazon EC2
clusters. We decided to test the performance with this 6GB
twitter table which had the same schema except the target
shown in table I. Rowkey was composed of column author,
location, and time; such design could overcome the hotspot
problem caused by unevenly distributing the data among
regionservers.

Table II shows the cluster configurations and running time

Table II
CLUSTER CONFIGURATIONS, HADOOP SETUP TIME AND TOTAL TIME TO

INDEX 6GB DATA

Group Number
of nodes

Data
nodes

RAM Hadoop
setup
time

Total time

1 1 1 3.75GB 6sec 45min 52sec
2 4 2 3.75GB 15sec 23min 11sec
3 8 6 3.75GB 50sec 11min 32sec
4 12 10 3.75GB 90sec 5min 36sec
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Figure 3. Total running time as a function of node numbers

for each cluster while Figure 3 indicates the running time
as a function of node numbers. It takes about 46 minutes to
index 6 GB data in one node cluster while it takes about 5.5
minutes in a twelve nodes cluster with 10 datanodes. The
running time is almost linear to the number of nodes in the
cluster since there is no dependency among the mappers.
The reason why the performance is not perfectly linear is
mostly due to the Hadoop setup overhead. Since we do
not use reducers, there is no data shuffle phase. Table II
shows Hadoop setup time is almost proportional to the size
of the cluster. Current experiments show the scalability and
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efficiency of our system, and we can safely infer a scalable
performance for bigger datasets in larger clusters based on
the experimental results.

After the Lucene indices are built, we would like to
test the performance of searching. Since Lucene relies on
directory interface to make index searchable, there are two
ways to search Lucene indices stored in HDFS. Boris
implemented a memory-based approach where the indices
were stored in memory for searching, which might not be
suitable for large table sets [21]. The other approach is to
copy the indices to local file system of each datanode. In
this paper, we test the performance of querying the indices
copied to one local file, which on average costs less than
1 second to get the results. Such response time is ideal for
real-time data analytics; this also proves the efficiency of
searching Lucene index.

VI. COMMUNITY DISCOVERY IN HURRICANE SANDY

There have been some work on finding communities in
social network [22]–[24]. Most of researches in the field
of community discoveries consider social connections, user
mentions, description content etc., as the similarity measure
for obtaining communities in the network [25]. Different
clustering algorithms can thus be applied to group the
people with a higher similarity into the same community,
and those with less similarity into others. This works well
for non-disaster situations because of steady social ties.
However, when disaster strikes, retweet reflects the dynamic
and temporal features as disaster develops.

In order to understand human reactions to natural disas-
ters, we apply cluster algorithms to a similarity matrix based
on retweets. Two people are considered to be connected
when one person retweets the other. The similarity between
these two is considered to be one. In order to construct
the global similarity matrix, we have to find the shortest
distance between any two connected pairs by retweets.
Retweet graph captures the temporal feature of the disaster
and reflects a certain level of trust. In this paper, we apply
spectral clustering algorithm to the similarity matrix to find
communities.

A. Retweet Graph

Reweet is a way for a user to tweet content that has
been posted by another user. The format is RT @username
where username is the twitter name of the person being
retweeted. As a result, we are only able to find the direct
retweet relationship between two. In this paper, we define
the distance of a retweeting pair as one, and the distance of
non-retweeting relationship as infinity. Diagonals are defined
as zero because a node has zero distance to itself.

For example, say user A retweets user B, and user B
retweets user C, we can generate the retweet matrix in
Table III. An issue with Table III is that the similarity
of A and C stays infinity whereas it should be two. In

order to calculate the similarities among all Twitter users,
we implement Floyd’s algorithm on the retweet matrix to
generate the similarity matrix.

Table III
AN ILLUSTRATION OF RETWEET MATRIX DESCRIBING THE SIMILARITY

AMONG THREE TWITTER USERS

Similarity A B C

A 0 1 ∞

B 1 0 1
C ∞ 1 0

B. Spectral Clustering

Spectral clustering is the technique of partitioning the
rows of a matrix, similarity matrix in our case, according
to their components in the top few singular vectors of
the matrix. Spectral clustering techniques make use of the
spectrum of the similarity matrix of the data to perform
dimensionality reduction before clustering in fewer dimen-
sions. There are different variants of spectral clustering
implementation based on different types of graph Laplacian
matrices. In our approach, we used the normalized spectral
clustering according to Ng, Jordon, and Weiss [26] shown
in Algorithm 1. The input of the algorithm includes the
similarity matrix and the number K of clusters to construct.
To build the similarity matrix, we implemented Floyd’s
algorithm to find shortest paths between all nodes. The
output is K different communities.

Algorithm 1 Normalized spectral clustering according to
Ng, Jordan, and Weiss (2002)
Input: Retweeting pairs, number k of clusters to constrcuct
Output: Cluster A1,· · ·Ak with Ai = {j|yj ∈ Ci}

1: Construct a retweet matrix S ∈ Rn×n by using Floyd’s
algorithm to find the shortest path Sij if i �= j, and Sii = 0.

2: Form the similarity matrix A ∈ Rn×n defined by Aij =
exp(−S2

ij/2σ
2).

3: Define D to be the diagonal matrix whose (i, i)-element is
the sum of A’s i-th row, and construct the Laplacian matrix
L = I −D−1/2AD−1/2.

4: Compute the first k eigenvectors u1, · · ·uk of L by running a
Singular Value Decomposition (SVD) on L.

5: Let U be the matrix containing the vectors u1, · · ·uk as
columns.

6: Form the matrix T ∈ Rn×k from U by normalizing the rows
to norm 1, that is set tij = uij/(

∑
k u

2

ik)
1/2.

7: For i = 1, · · ·, n, let yi ∈ Rk be the vector corresponding to
the i-th row of T .

8: Cluster the points (yi)i=1,···,n with the k-means algorithm into
clusters C1, · · ·, Ck.

C. Experimental Results

To retrieve Hurricane Sandy related tweets in NYC from
our Twitter table, we search the Lucene indices using a key-
word based approach by specifying the date to be October
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26-31, 2012, location New York City, and keywords like
“Hurricane”, “Sandy”, “Evacuation”, and “Emergency” etc.
After removing duplicates, the retweets in the result data set
are stored in SandyTwitter table.
Because the storm hit NYC on October 29, 2012, we

divided the tweets into three groups: October 26-28 before
landing on NYC, October 29 landing on NYC, and October
30-31 after landing. Table IV lists the statistics of Twitter
data in NYC from October 26 to October 31. As we can
see there is a slightly decrease in the number of tweets and
Twitter users on October 29 as Hurricane Sandy impacted
NYC. And the number almost doubled afterwards. Another
observation is that more than a quarter of tweets are retweets.
For each timeline, we tentatively clustered the data into
5 communities. We ended up with 15 communities. We
also defined the influential user by counting the number
of retweets; user with a higher number of retweets was
considered to have a bigger impact in the community.
Figure 4, generated by Gephi [27], shows the members of
one community on October 29 where NYCMayorsOffice,
NYGovCuomo,MikeBloomberg, AHurricaneSandy, sethmey-
ers21, nydailynews, NYTMetro, and NewYorkPost could be
considered as the influential people.

Table IV
NEW YORK CITY TWEETS STATISTICS DURING HURRICANE SANDY

FROM OCTOBER 26 TO OCTOBER 31, 2012

NYC Oct 26-28 Oct 29 Oct 30-31

Retweets/Tweets 1181/4551 945/3651 2393/8027

Percentage 26% 25.8% 29.8%

Number of users 1590 1375 3071

In addition, we utilize Latent Semantic Indexing [28]
(LSI) to identify the topics for each community on different
days. We first generate a term-document matrix based on
the tweet content from each community. The term-document
matrix, which is a bag-of-words representation, is later
transformed into a TF-IDF model. At last we transform this
TF-IDF model into a latent space of a lower dimensionality.
In the reduced space, we select top 10 topics, which are
composed of individual keywords.

Figure 5 shows four word clouds generated by keywords
from different communities before, during, and after Hur-
ricane Sandy hit NYC. The top one shows the topics of
a community before Hurricane Sandy hit where people are
concerned about the approaching of Hurricane Sandy, and
they are talking about alerts, evacuation, and leave. The
middle two word clouds are from two different communities
on October 29, 2012 when Hurricane Sandy hit NYC.
One mainly talked about the closing of Battery Tunnel and
Holland Tunnel as evidenced by the following tweet posted
by NYCMayorsOffice: Hugh Carey Brooklyn Battery Tunnel

Figure 4. A graph generated by Gephi showing all members in one
community. Different nodes represent different Twitter users. Nodes are
connected if one retweets the other. The size and color of the node is
proportional to the number of retweets the node gets.

Holland Tunnel closing PM today per Sandy. The other
more focused on emergency situations. Frankenstorm refers
to Hurricane Sandy. The last one shows when the Hurricane
is gone, most people are tweeting about thanking NYPD,
saving lives, and restoring water.

VII. DISCUSSION

This data analytics system is scalable in the sense that
data are distributed and indexed in HDFS. However, there
is still room for improving the scalability in terms of
parallelizing spectral clustering algorithm; future work can
utilize MapReduce to implement the spectral clustering
algorithm. Our implementation consists of three parts: 1.
Floyd’s algorithm to find shortest paths for all pairs to build
similarity matrix 2. Singular Value Decomposition (SVD)
of the similarity matrix 3. K-means clustering applied to a
lower dimension data space built from step 2.

In our experiment, it took more than 50 minutes to cluster
3000+ points in a laptop with Intel(R) Core(TM) i5-2520M
CPU, 4.0GB RAM, 64-bit Windows 7 and Oracle Java 7
where Floyd’s algorithm takes 40 seconds, SVD takes 45
minutes, and k-means takes about 1 minute. The paralleliza-
tion and optimization comes down to how to use MapReduce
to implement SVD. Reza computed the singular values and
the right singular vectors of a matrix in a MapReduce
environment [29]. Mohamed Hefeeda etc. designed a dis-
tributed approximate spetral clustering (DASC) algorithm,
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Figure 5. Word clouds generated from different communities according
to the timeline. The first is before Sandy hit NYC, the second and third
are two different communities when Sandy hit NYC and the fourth is after
Sandy left NYC.

and implemented DASC in the MapReduce framework [30].
Moreover, in this work we search the Lucene indices by
copying them back to one index directory stored locally; this
becomes impossible as the size of index grows. We plan to
distribute queries to each datanode where index is located
and combine the results using MapReduce.

VIII. CONCLUSION

This paper focuses on a social media data analytics system
for community discovery in Hurricane Sandy Twitter based
on HBase and Lucene. Experiments demonstrate the
scalability and efficiency for analyzing Twitter data and
building Lucene index for answering multiple dimensional
queries. This system takes advantage of Hadoop in many
aspects. Firstly, we use HBase and HDFS as the data
center to overcome the scalability and large volume data
challenges brought by social media data. Secondly, we rely
on MapReduce to build a Lucene index to empower HBase
with the full-text searching ability and utilize parallelization

to overcome computing complexity and big data processing.
In addition, we develop a novel approach to discover

communities based on retweet matrix using spectral
clustering algorithm. As the disaster unfolds, influential
users are identified, topical changes are observed, and the
community evolvement is demonstrated. This contributes to
a finer level of understanding human reactions in the face
of natural disasters in social media.
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