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Purpose: Monte Carlo simulations play a vital role in the understanding of the fundamental limita-
tions, design, and optimization of existing and emerging medical imaging systems. Efforts in this
area have resulted in the development of a wide variety of open-source software packages. One
such package, hybrid, uses a novel hybrid concept to model indirect scintillator detectors by
balancing the computational load using dual CPU and graphics processing unit (GPU) processors,
obtaining computational efficiency with reasonable accuracy. In this work, the authors describe
two open-source visualization interfaces, web and visual to facilitate the setup of
computational experiments via hybrid.
Methods: The visualization tools visual and web enable the user to control simulation
properties through a user interface. In the case of web, control via a web browser allows access
through mobile devices such as smartphones or tablets. web acts as a server back-end and
communicates with an NVIDIA GPU computing cluster that can support multiuser environments
where users can execute different experiments in parallel.
Results: The output consists of point response and pulse-height spectrum, and optical transport
statistics generated by hybrid. The users can download the output images and statistics through
a zip file for future reference. In addition, web provides a visualization window that displays a
few selected optical photon path as they get transported through the detector columns and allows the
user to trace the history of the optical photons.
Conclusions: The visualization tools visual and web provide features such as on the fly
generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while
allowing users to save simulation parameters and results from prior experiments. The graphical
interfaces simplify the simulation setup and allow the user to go directly from specifying input
parameters to receiving visual feedback for the model predictions. C 2014 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4901516]
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1. INTRODUCTION

The computational modeling of medical imaging systems
often requires obtaining a large number of simulated images
with low statistical uncertainty that translate into prohibi-
tive computing speeds. This is of particular relevancy to the
modeling of the imaging performance in microcolumnar CsI
detectors where thousands of optical photon scattering events
have to be tracked per incident x-ray particle. Fortunately,
the rise of hardware accelerators such as general purpose
graphical processing units (GPGPUs) and the stream process-
ing languages such as  (Ref. 1) and OpenCL (Ref. 2)
have enabled scientific simulations to take advantage of these
architectures to accelerate performance. One such package is
hybrid,3 a Monte Carlo package for modeling indirect
x-ray detectors with columnar scintillators. hybrid is
an improved version of  (Ref. 4) (Monte Carlo x-rAy,
electroN and opTical Imaging Simulation tool) and includes
several new features such as on-the-fly column geometry and
columnar crosstalk to model the columnar arrays more real-
istically as compared to . Moreover, a load balancer

is also implemented to dynamically allocate optical transport
showers to the GPU and CPU computing cores.

While hybrid requires less memory than  and
allows efficient simulation of clinical-size, large-area imag-
ing detectors, researchers are required to setup computational
experiments through an input file and to configure a GPU
computing environment. Moreover, with the rise of advanced
web development tools and technology, developers now have
the ability to design and build rich interfaces within web
browsers.5–8 We present web and visual, visu-
alization interfaces for the dynamic visualization of optical
photon transport and columnar structures in large area
detectors. web is an interface that can be accessed via
web pages either through a desktop or mobile device web
browser and visual is a stand-alone desktop applica-
tion. The motivation behind this work is to improve the us-
ability of hybrid in a research environment by help-
ing a researcher setup computational experiments on a GPU
computing cluster without having to know or deal with the
configuration of the cluster. The visualization interfaces are
dynamic as users can visualize the optical photon trajectories
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and columnar structures during execution. In this paper, we
focus on the design and implementation of web, visual-
, and their validation.

2. METHODS

web removes the difficulties of setting up and manag-
ing a GPU cluster for the user, the design goal is to provide a
simple interface for running simulations without the need for
compiling or configuring the  environment. visual
is a single user implementation of web designed as a
stand-alone visualization interface. Moreover, additional visu-
alization features such as generation of pulse-height spectra
(PHS) and point-response function (PRF) images are included.
In order to visualize hybrid dynamically, a modifica-
tion is introduced into the original code in order to asynchro-
nously retrieve simulation data from the GPU kernels while
having minimal performance degradation effects on the orig-
inal code. Both interfaces are freely available for download
from https://github.com/diamfda. Readers are encouraged to
view the manuals for minimum installation requirements in
order to setup both interfaces. The rest of this section de-
scribes hybrid succinctly and details the work flow of
web and visual.

hybrid uses  (Ref. 9) and fast2 (op-
tical transport routine)3 in the hybrid CPU–GPU implemen-
tation. PenEasy,10 a modular, user-friendly main program for
 including useful tally options and source models,
was modified to allow direct output of location and energy
deposited during x-ray and electron interactions within the
scintillator. These data are then transferred by the optical trans-
port routines in fast2. The novel GPU implementation of
the physics and geometry models in fast2 provides fea-
tures such as on-the-fly geometry and columnar crosstalk for
modeling realistic columnar structures in large area detectors.

The physics of the optical transport consists of tracking
photons until they are either absorbed in the bulk or at a
surface or are detected at the sensor layer. The probability
of absorption in the bulk is governed by the bulk absorption
coefficient (µabs). Photons are either transmitted or reflected at
columnar walls based on probabilities calculated using Snell’s
law and the Fresnel formulae.4 Furthermore, a load balancer
dynamically allocates optical transport showers to the CPU
and GPU for computation. hybrid has shown to achieve
significant performance increase up to a factor of 627 (Ref. 3)
when compared to  and a speedup factor of 35 when
compared to the same code running entirely in the CPU. The
load balancer allows hybrid to hide hours of optical
transport running time by executing in parallel with the x-ray
and electron transport and shifts the computational bottleneck
from optical to x-ray transport. Due to the on-the-fly geometry
feature, hybrid requires less memory than  and
opens the way to simulate much larger area detectors.

2.A. webmantis

The front-end for web uses the three.js WebGL li-
brary,11 along with /jQuery, , ,  5, and

 and has been tested successfully on the Mozilla
Firefox and Chrome web browsers. The back-end is coded
in /++ using the libevent12 server library, which has been
utilized in a variety of distributed systems and provides effi-
cient load balancing in a distributed environment. The usage
of libevent in web enables multiple users to setup their
own computational experiments and execute them in parallel
on different GPUs in a cluster. Different users can also install
web on their own GPU clusters and access the compu-
tational resources through a web browser on the desktop or
mobile devices. In order to enable multiple users to utilize
web on the same cluster, GPUs are probed sequentially,
starting from the most powerful one, until the first available
GPU is found. In our current setup, the GPU cluster contains
five NVIDIA GTX 480. web also allows for download-
ing output data generated by previous hybrid executions
in a zip file for future reference. The prior simulation data
include optical transport statistics, PRF, and PHS output im-
ages. Currently, web’ interface only allows changing
the optical transport input parameters for fast2 and not
for .

A workflow of the process of utilizing web is illus-
trated in Fig. 1. Multiple users can access web through
a web browser which takes them to the WebGL visualization.
The front-end comprises of a 3D visualization of the optical
photons trajectories and PHS and PRF output images generated
by the simulation, moreover, a text box detailing the optical
transport statistics of the simulation is also shown. By using
this front-end, the user is able to modify the input arguments
listed in Table I in order to setup computational experiments.
The use of jQuery, , and  enables the user to commu-
nicate with the cluster back-end in order to support actions
such as saving input arguments, simulation data, and control-
ling GPU execution. Once the users have setup their input
arguments, web transfers them to the back-end where
the hybrid code is then executed using a single GPU

F. 1. High-level schematic view of the webworkflow. This describes
the process in which multiple users interact with a cluster of GPUs in the
back-end to execute their computational experiments. The visualizations
are updated through a combination of callbacks and intermediate jQuery,
, and  script layers in the system. visual is similar except
the back-end uses a single GPU instead of a cluster and the intermediary
communications uses data files instead of scripting languages.
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T I. Default input parameters for simulation (parameters in bold affect
visualization).

Parameters Value

Number of x-ray histories to be simulated 100 000
Detector lateral dimensions 909 × 909 µm2

Detector thickness 150 µm
Column radius 5.1 µm
Refractive index column 1.8
Refractive index inter-col 1.0
Top surface absorption fraction 0.1
Bulk absorption coefficient 0.0001 µm−1

Surface roughness coefficient 0.10
Minimum distance to the next column 1.0 µm
Maximum distance to the next column 280.0 µm
Nonideal sensor reflectivity 0.25
Number of histories to be visualized 10

and CPU in the cluster. This communication is tied together
through the use of the libevent server.

Once the libevent server receives the command to execute
hybrid, the input files required by hybrid are
updated and code is then executed on an available GPU.
web allows one to visualize a number of optical photon
trajectories on-the-fly while the simulation is still running by
making a set of GPU kernel calls to simulate the optical pho-
tons. Once a kernel finishes, the simulation data are retrieved
and visualized using asynchronous memory copies between
GPU and CPU. For instance, as hybrid is simulating
the next set of optical photons in the GPU, the retrieved simu-
lation data are processed by the CPU before being sent back
to the front-end in order to update the different visualiza-
tions. During this process,  scripts running in the back-end
send a callback with the visualization data which travel to the
WebGL visualization front-end and are shown to the user.

2.B. visualmantis

visual is coded in /++ using the OpenGL and
Fast Light ToolKit13 libraries and is a stand-alone applica-
tion that requires compilation and execution in a -based
environment. During execution, files containing optical trans-
port statistics, PRF, and PHS output images are generated.
Similar to web, the interface only allows making changes
to the optical transport input parameters of fast2. The
workflow diagram of visual is similar in implementation
to Fig. 1, as the back-end uses a single GPU instead of a cluster
and the intermediary communications use data files instead of
scripting languages. The front-end of visual is similar
to web in displaying the generated images and photon
trajectory visualizations.

2.C. Visualization parameters

Table I lists input parameters that hybrid requires.
The parameters highlighted in bold represent the relevant
parameters that a user can change in order to affect the visual-

ization of the data. The other parameters are also modifiable,
although they do not have a direct impact on the visualization.
The number of x-ray histories for simulation specify the total
number of primaries to be simulated. The detector dimensions
represent the size of the scintillator. The columnar radius spec-
ifies the radius of each column in microns. It should be noted
that the detector dimensions and columnar radius dimensions
are not shown to scale in the visualization. Top surface absorp-
tion fraction of 0.1 indicates a reflective surface with only 10%
absorption. The surface roughness coefficient indicates the
degree of roughness of the column walls, with zero represent-
ing perfectly smooth walls. The distance between subsequent
columns visited by the optical photon is sampled uniformly
between the specified minimum and maximum distances. The
number of histories to be visualized represents the number of
optical photon histories for which every interaction is saved
in order to view the trajectories. This parameter has a default
value of ten, i.e., the first ten optical photons simulated by
hybrid are retrieved using the asynchronous memory
copy method described in Sec. 2.B. Users can modify this
variable to visualize more histories, the only caveat being the
amount of memory required to save the data. Each photon
in the x-ray history is represented with five single precision
floating point numbers. However, given the nondeterministic
nature of the simulation, the memory required for each x-ray
can range from 200 bytes to 4 kilobytes.

2.D. Validation

Although both web and visual are interfaces
for setting up a hybrid simulation, the original hybrid-
 GPU code was modified in order to support asynchro-
nous data copies. We validated our results from web
against hybrid for a 40 kVp input spectra. The material
geometry contains the following materials: 1 mm graphite sub-
strate, 2 µm aluminum polish, 174 µm cesium iodide, 10 µm
photodiode layer, and a 4.5 cm thick glass slab. For the purpose
of validation, we used the same random input seed for both
hybrid and web, and since web is built on
top of hybrid without changing any simulation prop-
erties, thus we achieved exactly the same results for both. We
calculated the Swank factor for web to be 0.9, which
matches with that of hybrid published data.14 Thus,
we conclude that web does not change the physics of
hybrid and extends its usability through a visualization.

3. RESULTS

In this section, we describe and illustrate the user interface
of web along with the corresponding visualization and
sample use case of how modifying the input arguments affect
the results. Since the only difference between the web and
visual versions of the tool is the graphical programming lan-
guage, we chose for this note to provide details and illustrate
only the web tool.

We also demonstrate validation data by comparing to pub-
lished results.14 The material geometry used in Sec. 3.A is

Medical Physics, Vol. 41, No. 12, December 2014
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F. 2. Illustration of the interface of web and labeled sections. Cylin-
ders indicate various columns in the scintillator, while the squares mark the
top and bottom surfaces where the optical photons can get reflected back or
absorbed.

a 0.015 cm cesium iodide scintillator screen. We show re-
sults for x-ray scintillator detectors based on cesium iodide.
Modeling other materials is possible with these tools but re-
quires simple changes to the scripts and files in the server
side. The reader interested in such changes should follow the
instruction in the hybrid documentation.

3.A. webmantis visualizations

Figure 2 illustrates the resulting visualization with
web using the default input parameters and highlights
the different working areas in the graphical user interface.
web provides a main 3D visualization in the middle of
the interface. We render the history of each optical photon as
representative of the lines connecting colored dots along with
cylinders. A line between two dots in Fig. 2 shows the path that
the optical photon has taken. The colored cylinders represent
the columns in the scintillator; the optical photons can either
get absorbed or reflected at the top and bottom surfaces of the
scintillator marked by black and white squares. The PHS and
PRF images are displayed on the right of the interface as high-
lighted. A button is provided that allow users to scroll through
them and view images generated during the simulation. The
text box situated on top right provides the optical photon trans-
port statistics and is updated dynamically as hybrid is
executed in the GPU cluster, downloading the results as a zip
file. The menu bar situated at the top of the interface allows the
user to control different aspects of executing the code such as
starting a new hybrid job on the GPU cluster. Moreover,
since this is a multiuser environment, the menu bar enables
the user to manually delete their current job at any time in
order avoid hogging up system resources. The download button
provided above the simulation statistics text box enables the
user to download prior simulation data including the statistics,
PRF, and PHS images and their corresponding data files. In the
bottom of the interface, web has sliding bars in order to
follow the optical photon trajectories in a step-by-step fashion.
In addition, the user can alter the transparency of the graphical
objects and browse through different optical photon histories.

4. CONCLUSION

We describe the visualization interfaces web and
visual for hybrid, a Monte Carlo software pack-
age for x-ray, electron, and optical photon transport. web
abstracts away the difficulties of setting up and managing a
GPU cluster for the use and provides simple interface for runn-
ing computational experiments in a multiple user environment
through a web browser. Although users can interact with the
visualizations while the GPU is executing in the background,
the download and zip feature needs to be performed manually
at the end of simulation. visual is designed and built as a
stand-alone visualization application that provides a intuitive
graphical user interface to setup computational experiments
on a personal workstation. Both tools provide visualization
features such as on-the-fly generation of PHS and PRF im-
ages, allowing users to save simulation parameters and results
from prior experiments. The graphical interfaces also simplify
the simulation setup and allow the user to go directly from
specifying input parameters to receiving visual feedback. The
utility of these tools lies primarily in the early design stages of
x-ray imaging detectors during which the thickness of the CsI
microcolumnar layer and the reflectivity of key surfaces can
be modified by the manufacturer to obtain a desired imaging
performance to match the needs of the application.
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