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1 Introduction

Today’s latency-sensitive cloud applications1 play a critical role; in many cases, fleets of servers are
dedicated to running a single instance of these applications [18, 15, 7, 20, 21]. As global data center
energy use continues to rise [8, 19, 4, 17], it is critical to find ways to meet the challenging requirements
of these applications while reducing their energy use. A recent study has shown that the environmental
footprint of hardware manufacturing is also increasing concurrently [8], which stresses the importance
of being able to extract more value out of existing software and hardware. Motivated by the rise of
this software-hardware dedication, our work presents a generic approach to optimize the efficiency of
network applications by taming and controlling its performance and energy trade-offs in an automatic
way [9]. We achieve this through the use of a sample efficient machine learning technique, Bayesian
optimization [6], to exploit two hardware mechanisms that externally control interrupt coalescing and
processor energy settings and demonstrate improvements over existing mechanisms.

The key insight with which we base our Bayesian optimization approach is that being able to
externally control interrupt coalescing helps stabilizes application latency periods such it becomes
easier to control performance-energy trade-offs and magnify its benefits with processor energy settings.
We arrived at this insight through a performance and energy study of network applications. From the
data collected in our study, we uncover that a software stack has a characteristic performance-energy
efficiency profile that is a function of two hardware mechanisms: 1) a NIC’s interrupt delay setting
(ITR) [12, 16, 10] to control coalescing behavior and 2) the processor’s Dynamic Voltage Frequency
Scaling (DVFS ) [2, 1] to control its frequency and energy setting. We illustrate the controller’s use in
exploiting the stable mean demand curve of a publicly available key-value trace [13] to save up to 60%
in server energy. Further, we demonstrate the generality of our approach, finding savings up to 36%
on applications different from our study (Tailbench [14]) and on radically different hardware platforms
released almost a decade apart (i.e. Intel E5-2640-released Q1’12 and Ampere ARMv8 released Q4’21).

2 Energy Study

We present an example result of our energy study of how ITR, DVFS, and OS logic and paths interact
together to impact performance and energy trade-offs in Memcached [5].

2.1 Per-Interrupt Log Collection

For the study, we built a per-interrupt logging framework, intlog (Acesss to our data and logging
scripts can be found at https://github.com/sesa/intlog), in Linux’s network device driver. We collect
the following data in the NIC’s interrupt handler code: received and transmitted bytes, descriptors,
sleep state statistics, and current timestamp via rdtsc instruction. Additionally, per-core Intel perfor-
mance monitoring counters (PMCs) capture hardware statistics every millisecond, including instruc-
tions, cycles, and last-level cache misses. We use standard Running Average Power Limit (RAPL)
hardware registers to read per-package energy values [11]

1Examples include kev-value stores, search, and image and speech recognition. The execution of such applications
must often meet a specific performance target expressed as a Service Level Agreement (SLA). A common SLA is a 99%
tail latency requirement – Eg. 99% of all requests must be completed within some time limit.
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Figure 1: Illustrates the change in energy and 99% latency as different ITR, DVFS pairs are explored for
Linux memcached at three different loads of 200K, 400K QPS.

2.2 Revealing ITR and DVFS Performance-Energy Trade-offs

To help build intuition of the impact of specific ITR and DVFS settings on the performance and
energy of network applications, we present an example in fig. 1 featuring a Linux memcached server
with a load of 200K and 400K requests-per-second (QPS). Using colored gradients, the figure visually
represents the effects of each ITR-delay, and DVFS pair; each data point is divided in half, providing
insights into their respective impacts on 99% latency and energy. In fig. 1, one can see the trend that
as DVFS decreases from 2.9 GHz: the energy gradient becomes lighter, indicating a more pronounced
impact on reducing energy use. Simultaneously, increasing ITR horizontally has an immediate effect on
increasing measured 99% latency, evident in the darkening of colored gradients. Further, we observe
as ITR increases, this induces additional queuing which enables efficient request batching, thereby
facilitating additional energy savings. These observations indicate that one can build a controller that
toggles combinations of ITR and DVFS to select different operating points and move within this energy
space.

Figure 2: BayOp controller applied to various applications and loads.

3 Proof-of-Concept Controller

We built a prototype controller, Linux-BayOp, that periodically samples the energy and performance
of a live system and uses Bayesian optimization to tune ITR, DVFS to minimize energy while adhering
to application SLA objectives. In fig. 2, we applied it to a memcached server over 24 hour period and
found it can dynamically adjust to changing load rates and save up to 60% energy over Linux’s default
policy while maintaing SLA objectives. We then demonstrate its generality across a set of benchmarks
from Tailbench [14] while running on a diverse set of hardware nodes from CloudLab [3] and discovered
that ITR, DVFS tuning can be agnostically applied in both software and hardware.
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4 Future Work

Linux contains many dynamic policies that have their own objectives and are full of implicit and/or
hidden heuristics. Our data-driven approach to creating energy efficiency system policies is continuing
as part of the Boston Univerity-Red Hat Research Collabotary in two main projects. The first involves
improving the energy efficiency of streaming-based application deployments such as Apache Flink where
there is a often a dynamic feedback loop that adjusts input rate depending on processing capabilities
of downstream worker tasks. In the second we are working on the Kubernetes Efficient Power Level
Exporter (Kepler) project to utilize their exported metrics to create energy efficient schedulers.
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