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Abstract—Current generation of multicore computing plat-
forms are vastly different. Sustenance of many core applica-
tions across heterogenous platforms is a daunting task, more
so when dynamic nature of the application is factored in.
Open Computing Language (OpenCL) was created to address
this issue. Designed to run on CPUs, GPUs, FPGAs and
other platforms. OpenCL is becoming a standard for cross-
platform parallel programming. While current implementa-
tions of OpenCL compiler provide the capability to compile
and run on the platforms mentioned above, most of the current
literatures investigate the OpenCL performance on GPUs. In a
previous work, Fahad et al [1] reported how low level implicit
auto vectorization capability of OpenCL allows remarkable
performance optimization on CPUs. In this paper we present
our investigation results on OpenCL portability across CPU
and GPU platforms in terms of code and performance via
a representative climate and weather physics model, NASA’s
GEOS-5 solar radiation model (SOLAR). A single OpenCL
implementation portable between CPUs and GPUs has been
obtained. Through algorithm refactoring, OpenCL’s vector-
oriented programming paradigm and implicit vectorization led
to significant performance gains.

Keywords-Multi-threaded environments; Parallel Applica-
tions; OpenCL; Vectorization

I. INTRODUCTION

Current trends in computer processor development have

moved from a single powerful core to multi-core such as

Intel Westmere and IBM Power7 and many-core accelerators

such as NVIDIA Fermi and AMD FireStream GPUs. These

architectural improvements are useful only if compute-

intensive applications can efficiently utilize all the resources

in a computer system. However, distinct architecture dif-

ferences, in particular between CPUs and GPUs, pose a

very challenging task for developing an application code

with longevity as well as optimal performance. OpenCL

offers a standard heterogeneous programming environment

for applications to execute on CPUs, GPUs and various

types of accelerators and mobile processors [2][3]. OpenCL

follows a SPMD (Single Process Multiple Data) model

for programming where the parallel portions of a program

comprise a grid of work items executing the same code.

In this paper we explore the code and performance

portability of OpenCL across different platforms consisting

of CPUs and GPUs using a real-world, representative climate

and weather physics model, solar radiation (SOLAR). Fur-

thermore, we investigate the reasons behind performance and

portability on IBM Power6, and Intel CPUs and NVIDIA

GPUs in Linux and Mac OSX environments. Across the

various platforms we noticed significant performance gains,

especially among Intel CPU processors (see Table II). These

results have been adumbrated along with detailed code

analysis in the following sections. We conjecture that these

observed gains are facilitated by Single Instruction Multiple

Data (SIMD) coding style of OpenCL kernels along with

the implicit vectorization capabilities of the OpenCL SDK’s

provided by the vendors.

The rest of the paper is organized as follows: in Section

II, related work in the area of porting code to CPU and

GPU are discussed. Section III provides an analysis of

the GEOS-5 climate model, specifically the solar radiation

component. Section IV lists the experimental setup in terms

of platforms and hardware. In Section V, we highlight our

experiences in porting the serial C code to a parallel OpenCL

version along with various optimizations that contribute to

the overall performance gains. Section VI discusses the code

and performance portability from CPU to CPU platforms,

GPU to GPU platforms, and across CPU and GPU platforms.

Section VII touches upon the topic of explicit manual

vectorization through the use of Intel AVX [4] intrinsic and

we conclude our paper in Section VIII.

II. RELATED WORK

OpenCL is an open standard for parallel programming

on modern heterogenous platforms; it is designed to be

hardware-agnostic in order to take advantage of all com-

puting resources available in a system. These computing

resources can range from GPUs, Multicore CPUs to IBM

Cell processors and FPGAs. The cross-platform design of

OpenCL enables applications to be portable between dif-

ferent kinds of hardware systems and the performance of

the application will rely on how these hardware exploit

more parallelism. Although research in parallel program-

ming often discuss the platform independence of OpenCL

as its main benefit [5][6][7], most results focus on the

performance of OpenCL on GPU devices instead of CPU

devices [8][9][10], where CUDA often outperforms OpenCL
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in executing the same code [11]. To our knowledge, the

few works that discuss performance of OpenCL in CPUs by

Grosser et al [12] and Zhang et al [13] provide limited in-

depth analysis on the reasons behind the performance gains

even though it has been shown by Lee et al [14] that CPUs

exhibits similar performance gains compared to GPUs given

adequate performance tunings.

The SOLAR code was initially translated from FOR-

TRAN to C, and ported to the IBM Cell Broadband En-

gine by Zhou et al [5] where detailed code analysis and

performance improvements were discussed. Fahad et al [1]

extended the serial, single-precision C implementation of

SOLAR to the IBM Power architecture and Intel x86 archi-

tecture with OpenCL and obtained considerable performance

improvement (3x to 4x) per processor core. However, their

implementation cannot execute on GPUs and only obtained

a floating point computational accuracy of 1.0×10−4 for the

parallel implementation while the serial CPU code produced

results up to 1.0×10−6 floating point accuracy. In this paper,

we extend their work by achieving the following goals:

• A single parallel OpenCL code compilable and

runnable across multiple platforms consisting of IBM

Cells, multicore CPUs and GPUs.

• Achieved parallel implementation accuracy of

1.0×10−6 through a proactive approach by making

algorithmic changes to the original serial code to

better fit OpenCL SIMD style of programming. This

was comparatively different from the implementation

by Fahad et al [1] where a simpler approach was

taken to port the serial code by replacing loops with

multiple threads thus, no major algorithmic changes

was required.

• Speedup results indicate dramatic performance gains of

executing OpenCL code on multicore CPUs, (5.5x to

24x) per thread.

III. ANALYSIS OF SOLAR RADIATION MODEL

In a climate model, the Earth is represented with a 3

dimensional grid. Typically a latitude-longitude grid where

the horizontal direction is used to solve fluid dynamics

equations. A grid in the vertical direction, so-called column,

is used to describe physical processes such as solar radiation,

cloud, and precipitation. The NASA GEOS-5 climate model

is a production-quality climate modeling code consisting of

a few hundred thousand lines of code written in FORTRAN.

In this paper, we focus on a particular portion of the code

handling solar radiation effects (SOLAR), which can take

around 10% of the total runtime depending upon aerosol

effects. The code structure only has dependence in the

vertical direction, which is representative of physical model

components used in climate and weather models. Reduction

in execution time of SOLAR will allow it to be utilized more

frequently and consequently will help improving the pre-

dictability of climate models such as GEOS-5 and weather

models such as the Weather Research and Forecasting

(WRF) Model. In addition, a unified implementation that

preserves performance across heterogeneous platforms will

have an enormous impact on its longevity, therefore reducing

the human cost and effort in maintaining the code. The

program structure of SOLAR is shown in Figure 1 - bulk

computations are done in SOLUV and SOLIR functions.

SOLUV and SOLIR perform ultraviolet and infrared radi-

ation computations, respectively. Both utilize many of the

same methods inside the code base. The serial C version

of SOLAR utilizes single precision floats and consists of

around 1500 lines of code. SOLUV takes around 15% of

the total runtime while SOLIR takes around 80% of the

total runtime.

Figure 1. The code structure of solar radiation model, SOLAR.

IV. EXPERIMENTAL SETUP

The serial C version of SOLAR is used to confirm

the accuracy of the results and for performance comparison.

Table I lists the various platforms used in our work, where

COMPUTE UNITS refers to the number of computational

units on each platform. This is due to OpenCL’s abstract

platform model [15], which maps the number of compute

units to the number of threads in CPU processors and

similarly to the number of Streaming Multiprocessors (SM)

in GPU devices. Each compute unit consists of an array of

processing elements that execute the code.

The Intel Core i7-2630QM is a 4 core Sandy Bridge

processor which can execute 2 simultaneous threads per

core; it supports the latest Intel Streaming SIMD Extensions

(SSE) 4.2 [16], Advanced Vector Extensions (AVX) [4] and

it executes with maximum COMPUTE UNITS of 8. The

Intel Xeon CPU X5670 is a 6 core Nehalem processor
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which can execute 2 threads per core; however the node

has dual Intel Xeon X5670 processors which executes with

maximum COMPUTE UNITS of 24 and it supports Intel’s

SSE 4.2. The Intel Core 2 Duo has 2 cores and can execute 1

thread per core; it runs with maximum COMPUTE UNITS

of 2 and supports the Intel SSE 4.1 extensions. Intel’s SSE

and AVX extensions are special instructions that operate on

128 bit (SSE) and 256 bit (AVX) registers, which can pack

floating point numbers and execute a single instruction on

each float in parallel [17].

The IBM JS22 Power6 blade has dual quad-core pro-

cessors that executes with maximum COMPUTE UNITS

of 8. NVIDIA GeForce GTX 580M is a Fermi class GPU

with compute capability 2.1. It has 8 SM’s and 48 CUDA

cores per SM (total of 384 CUDA cores). It runs with

maximum COMPUTE UNITS of 8. The GeForce GT 320M

has compute capability 1.2 with 6 SMs and 12 CUDA cores

per SM (total 72 CUDA cores), and runs with maximum

COMPUTE UNITS of 6.

Intel Core i7 and NVIDIA GTX 580M reside on the

same workstation with Ubuntu 11.04 OS. The Intel Xeon

X5670 and IBM Power6 are on different compute nodes

running different versions of Red Hat Linux. The Intel

Core 2 Duo and GeForce GT 320M reside on the same

workstation with Mac OSX 10.6.7 OS.

V. PORTING AND OPTIMIZATIONS

We focused our first OpenCL implementation to run on

CPU due to the simplicity of implementation compared to

GPU, where special attention needs to be given for memory

coalescing, utilization of local memory, and minimizing

usage of PCI Express Bus. The CPU version does not use

the PCI Express Bus and local memory is not needed as

OpenCL memory objects are cached by the processor[18].

The parallel version of SOLAR consists of 36 kernels and

is executed on OpenCL compute units, either CPU cores or

GPU SM’s.

The functions in SOLUV and SOLIR are optimized

with insights from Intel OpenCL SDK guide [18]. These

include: temporary data variables to decrease global memory

accesses, removing conditionals to decrease thread diver-

gence within the kernels. Preprocessor macros were used

for constant variables that dictated kernel loop iterations in

order to enable OpenCL dynamic compilation to perform

implicit loop unrolling.

In SOLAR, most of the functions were easily paral-

lelized through kernel merging or reordering of operations

in order to fully utilize the CPU or GPU. However, the

computationally expensive CLDFLX function required ma-

jor algorithmic changes since it not only contained multiple

multidimensional arrays but a three layer conditional state-

ment with data dependencies. A major part of porting and

optimization was spent in breaking the dependence. Listings

6, 7, and 8 represent the result of splitting CLDFLX into

three kernels, upKernel, downKernel, and reductionKernel.
An OpenCL kernel is similar to a CUDA kernel, it is a

routine that is executed on the GPU or CPU in parallel

either by GPU threads or CPU threads. CLDFLX consists

of multiple arrays with eight different layer configurations

for clear and/or cloudy weather conditions. Most arrays

are used for initial energy flux calculations while a final

array stores a summation of the previous energy fluxes.

We utilized bit masks with eight bits to simulate all eight

weather configurations. The upKernel and downKernel are

named as such since the calculations go up and down the

columns updating the initial energy fluxes due to no data

dependencies across the eight different layer configurations.

The reductionKernel has data dependencies across the layer

configurations in order to compute an intermediate array to

be used in the final summation. However the intermediate

array was redundantly recomputed every time. This was re-

solved by pre-computing the intermediate array and passing

it to the kernel as an input argument. The optimizations

listed above benefits the GPU devices by eliminating thread

divergence and data dependencies.

The parallel OpenCL implementation contains around

1800 lines of kernel code and 36 kernels. The kernels range

from one-dimensional to three-dimensional. There are over

70 multidimensional arrays. Each thread in a kernel maps to

each specific index in the arrays passed as arguments, thus

no barriers were required. The initial porting to OpenCL

performed reasonably well on both CPU and GPU platforms;

performance results are elaborated more in the next section.

VI. RESULTS

Figure 2 shows the execution time of a single parallel

OpenCL SOLAR code on all of the different platforms.

It shows the pure execution time and excludes time for

initialization, data writes and reads. In Tables 1 and 2, certain

information are intentionally empty for the GPUs, such as

clock speeds and speedups per thread. The clocks for the

GPUs are difficult to compare against CPUs as GPUs consist

of multiple vector processing units with its own processing

and graphics clocks. A GPU thread cannot be compared

to a CPU thread as a single GPU thread is much more

lightweight and can be considered as a functional unit that

is part of an entire warp (32 CUDA threads) of functional

units that execute a single vector instruction across the same

data in lockstep.

The varying column sizes in Table II correspond to the

SOLAR model, where the column is a section of the grid

in the vertical direction and is used to describe physical

processes such as solar radiation, cloud, and precipitation.

A larger column size increases the amount of computation

required by increasing the array sizes, which corresponds to

the solar radiation on the vertical direction of the grid that

models the Earth’s climate.
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Platform Compute
Units

Clock (GHz) Environment GCC Ver-
sion

OpenCL SDK OpenCL Spec-
ification

IBM JS22 Power6 8 4.00 Red Hat 4.1.2-48 4.1.2 IBM Power v0.3 1.1
Intel Core i7 2630QM 8 2.00 Ubuntu 11.04 4.5.2 Intel 1.5 1.1
Intel Core 2 Duo P8600 2 2.40 Mac OSX 10.6.7 4.2.1 Intel 1.1 1.0
GeForce GTX 580M 8 - Ubuntu 11.04 4.5.2 CUDA 4.0.1 1.1
GeForce GT 320M 6 - Mac OSX 10.6.7 4.2.1 CUDA 3.2 1.0
Dual Intel Xeon X5670 24 2.93 Red Hat 4.4.4-13 4.4.4 Intel 1.5 1.1

Table I
CHARACTERISTICS OF CPUS AND GPUS USED IN PERFORMANCE TESTING.

Figure 2. Average execution time from 128 to 1024 columns

A. Code Portability

Across different CPU platforms, the parallel code that

compiled and ran on one x86 architecture ran seamlessly on

the others as the majority of platforms adhered to OpenCL

1.1 specifications. One main reason behind good code porta-

bility in the parallel OpenCL implementation was due to

minimal computation complexity within the kernels; the ma-

jority of the code required simple add, subtract, division and

multiplication operations with the occasional if and for loops

and did not utilize many of the native built in functions. We

tested our GPU implementation on two platforms, Mac OSX

v10.6.7 for OpenCL 1.0 specification on NVIDIA GeForce

320M with compute capability 1.2 and Ubuntu 11.04 for

OpenCL 1.1 specification on NVIDIA GTX 580M with

compute capability 2.1. After minute changes were made,

we achieved the results with an accuracy of up to 1.0×10−6

difference compared to the serial C implementation. The

code portability of OpenCL is evident even across CPUs to

GPUs and vice versa. The parallel CPU and GPU results

from Figure 2 are compiled and executed from a single

OpenCL code.

B. Performance Portability

1) CPU:
Table II shows that majority of the CPU platforms

exhibited speedup improvements, especially among the

Intel Core i7 and Dual Intel Xeons. The Core i7 had the

best per thread speedup (24x for each thread) at the case

of 512 columns. The Xeon had the best total speedup

(359x at the case of 512 columns) as it could launch 24

threads of computation compared to the 8 threads of Core

i7. Likewise, a 2x speedup can be seen on the Intel Core 2

Duo and a 10x speedup on the IBM Power6. For the solar

radiation code, the performance can be seen as portable
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Column Size
128 256 512 1024

Platform Per
Thread

Total Per
Thread

Total Per
Thread

Total Per
Thread

Total

Intel Core i7-2630QM 5.5 55 11.25 90 24 192 17.7 142
Dual Intel Xeon X5670 3.3 80 6.8 163.7 14.9 359 13 312
GeForce GTX 580M - 21 - 38 - 61.5 - 26
IBM JS22 Power6 1.3 10.2 0.9 7.16 0.27 2.16 0.742 5.93
Intel Core 2 Duo 1.01 2.02 1.05 2.1 0.89 0.445 - -
GeForce GT 320M - 10.02 - 5.329 - - - -

Table II
SPEEDUP ACROSS ALL PLATFORMS

among the varying platforms and OS. The speedup results

from Table II was gathered from a single parallel OpenCL

implementation of SOLAR. On each platform, the parallel

code was compared against the serial C version of SOLAR

compiled and executed on the same platform. The serial C

version of SOLAR, was compiled with -O2 optimization

flag and the parallel implementation was compiled with -O2
-cl-fast-relaxed-math -cl-mad-enable optimization flags.

GCC was used to compile both the serial and parallel

codes, however the versions varied on different platforms

(Table I).

Table II indicates substantial speedup from the Intel

platforms given a limited amount of computational threads.

The reason being that is the Intel OpenCL SDK provides

implicit vectorization through the compiler, specifically

the SSE [16] and AVX intrinsic [4]. We utilized the Intel
Offline Compiler [19] to output Intel OpenCL kernel

assembly as well as ppu-objdump to output IBM OpenCL

kernel assemblies. The results for the assembly of Intel

platforms can be seen in Listing 1 and 2, which indicates

the usage of XMM* registers which are the 128 bit Intel

SSE registers [16] that are available on both the Core

i7 and the Xeon X5670. In addition, we notice that the

Core i7 assembly also includes YMM* register usage. The

YMM* registers are the latest Intel AVX extensions [4]

that supports full 8 wide floating point vectors (256 bit).

Instructions such as vmulpd and vpshufd are special SIMD

instructions belonging to the Intel SSE family.

The main reason for the dramatic speedup in our

implementation is due to the fact that the Intel OpenCL

SDK helped GCC compiler to further vectorize instructions

at assembly level and the coding style of OpenCL

contributed greatly to this implicit vectorization. OpenCL’s

coding style is SIMD based as it is intended to run on GPUs

too. Optimizations that are important for GPUs such as

reducing thread divergence and improving stridden memory

accesses greatly helps compilers for CPUs. The primary

reason is due to SIMD style of kernel programming since

it eliminates complex loop constructs. This helps compilers

to provide more effective vectorization as it usually behaves

in a conservative manner for vectorization, only proceeding

when it is safe [20]; this relies upon data dependency graphs

of the loops. If there are no cycles in the graph then the loop

can be easily vectorized [21], and cycles are broken through

the optimization of kernels originally intended to execute on

GPUs to fully exploit the SIMD feature of vector processors.

vmulpd YMM1, YMM4, YMM1
vpshufd XMM4, XMM5, 3
vcvtss2sd XMM4, XMM4, XMM4
vmovhlps XMM8, XMM5, XMM5
vcvtss2sd XMM8, XMM8, XMM8

Listing 1. OpenCL offline compiler assembly dump of a portion of kernel
code on Intel i7-2630QM.

vmulss XMM0, XMM0, DWORD PTR [RSP + 84]
vmovss XMM1, DWORD PTR [RIP + .LCPI56_0]
vaddss XMM2, XMM0, XMM1
vmovss DWORD PTR [RSP + 60], XMM2

Listing 2. OpenCL offline compiler assembly dumping of a portion of
kernel code on Intel Xeon X5670.

In Listing 3, vectorization can also be seen on IBM

Power6. Instructions starting with va* and vm* are the spe-

cial AltiVec SIMD instruction sets [22] used for vector mul-

tiply and adds. The AltiVec instruction set enables the usage

of 128 bit registers. However, the performance of the Power6

is not as good as Intel Core i7 or Xeon. The best speedup

was at 128 columns where a 1.3x speedup per thread was

seen. One potential reason is GCC rather than XLC compiler

was utilized to compile and execute on Power6. Additionally,

utilizing -O2 and -O3 optimization flags with GCC on

Power6 produced no speedup for both serial and parallel

code. In fact, the serial implementation executed slower with

-O2 and -O3 optimization flags compared to no optimization

flag usage. XLC is a commercially available compiler from

IBM and is specifically designed for PowerPC architectures;

it performs native implicit vectorization to utilize the AltiVec

instruction sets [23]. From the work of Fahad et al [1], a 3x

to 4x speedup was witnessed per core on the same JS22 IBM

Power6 blade due to optimizations by XLC compiler; further

evidence can be seen from [1] as the serial code on Power6

executed 2.5x faster with XLC compared to GCC. Other
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research has also shown XLC to perform better compared

to GCC [24][25].

Why does GCC improve OpenCL performance on Intel

x86 but not so much on IBM PowerPC? The reason could

be due to the difference between Intel OpenCL SDK and the

IBM OpenCL SDK. Intel’s implementation of OpenCL 1.1

specifications is specifically optimized for Intel processors;

furthermore it provides implicit vectorization by mapping

the code to hardware vector units and merges OpenCL

work items in order to utilize SSE and AVX intrinsic [26].

However, IBM OpenCL SDK [27] does not explicit mention

implicit AltiVec vectorization is supported natively through

their OpenCL compiler. Unfortunately, XLC is needed with

IBM OpenCL SDK in order to implicitly generate low

level AltiVec instructions which were unavailable in our

test platforms. Our investigation in the IBM OpenCL kernel

assembly indicated only a small fraction of AltiVec instruc-

tions were utilized while the Intel OpenCL Offline compiler

indicated that both Intel Core i7 and Xeon (Listing 1 and 2)

utilized more SSE and AVX intrinsic.

As the the column sizes increased, Intel Core i7 and

Dual Intel Xeon increased performance compared to the

serial implementation by packing more floating point cal-

culations on the SSE and AVX registers.

100006cc: 10 05 29 80 vaddcuw v0,v5,
v5

100006d0: 00 00 0b b0 .long 0xbb0
100006d4: 12 00 00 00 vaddubm v16,v0

,v0
100006d8: 00 00 04 37 .long 0x437
100006dc: 10 05 26 64 vmsumubm v0,v5

,v4,v25

Listing 3. ppu-objdump of assembly on IBM Power6.

2) GPU:
For the GTX 580M, the best speedup of 61.5x was seen

with the case of 512 columns. However this performance

does not seem to be portable as GT 320M had a performance

decrease from 10x at 128 columns to 5x at 256 columns

while GTX 580M increased its speedup from 21x at 128

columns to 38x at 256 columns. The GTX 580M was using

CUDA’s latest OpenCL SDK that is adhering to OpenCL

1.1 specifications while the GT 320M was using an older

version of the SDK that only supported the 1.0 specifications

(Table I). This difference can result in compilers doing more

optimizations with the GTX 580M. Both GPUs ran slower

at 256 columns compared to 128 columns; the GTX 580M

was 10% slower while the GT 320M was 4x slower (Figure

3). The GTX 580M not only has more cores per SM (384

CUDA Cores) compared to the GT 320M (72 CUDA Cores),

but also has more memory and faster clock speeds [28]. At

256 columns, the GT 320M did not have enough physical

resources to run the application efficiently. The memory

limitations of the GT 320M also meant that it was not

successful in running the code at column sizes 512 and 1024

as segmentation faults occurred (Table II).The parallel code

used to run on the GPUs is the exact same code used for

the CPUs, the only difference was the specification of CPU

or GPU platform at compile time.

The GT 320M has 16 KB of local memory per SM

while the GTX 580M has 49 KB of local memory per

SM. Exploring local memory was severely limited due to

large data size requirements in each column of SOLAR.

For maximal PCI Express bandwidth utilization we experi-

mentally used pinned memory. On PCIe Gen2 cards, pinned

memory can attain greater than 5 GBps transfer rate [29].

One problem was OpenCL’s limitation compared to CUDA

when it comes to utilizing pinned memory. OpenCL does not

have control over whether memory objects are allocated in

the pinned memory. Developers can only request for pinned

memory allocation by CL MEM ALLOC HOST PTR. The

computational flow of SOLAR was not embarrassingly

parallel. It included over 70 multi-dimensional arrays that

needed to be allocated on global memory. This contributed

to the difficulty in implementing GPU specific optimizations

as we were not able to identify a specific kernel that could

benefit from utilizing local memory. However, the attempts

to merge kernels greatly improved GPU performance as we

reduced the original 70 kernels from Fahad et al [1] to about

half (36 kernels). Kernel aggregation helps to reduce kernel

invocation overhead and the optimizations listed in Section

V produced more performance gain.

The goal of executing SOLAR on commodity GPUs

was to demonstrate the portability of the performance be-

tween CPUs and GPUs given a single parallel OpenCL code.

Among Intel Core i7, Intel Dual Xeon, and NVIDIA GTX

580m, it can be seen that there is a relative performance

portability for the different hardware platforms. In this case,

the architectural differences between the CPU and GPU

platforms means the effects of reorganizing the algorithm for

kernel SIMDization is less profound on the GPU compared

to the CPU due to SSE and AVX registers on the Intel CPUs.

VII. DISCUSSION

The Intel Core i7 is a Sandy Bridge processor.

Listing 1 indicates automatic promotion of float arrays

to either float4, thereby using the 128 bit SSE registers

(XMM*), or float8, which are the new 256 bit AVX

registers (YMM*). Since AVX register usage was limited

on Intel Core i7, we attempted to explicitly use vector

data types of float8 instead of regular floats by including

attribute ((vec type hint(float8))) for each kernel

header and padded floating arrays to be divisible by 8.

The main benefit of utilizing manual vector data types is

the ability to map the vector data to the hardware vector

registers. Therefore the float8 arrays will be matched to the

width of the underlying YMM* AVX registers. Although
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this will adversely affect the performance portability of the

code given that we are targeting a specific vector width,

we hope to achieve significant gains in performance for the

targeted platform. We have managed to manually vectorize

the SOLUV function which allows performance comparison

of the manually vectorized SOLUV against the SOLUV

of the original parallel OpenCL implementation. The main

challenge in manual vectorization is that vector data types

cannot be used in conditional statements; we utilized built-

in relational functions such as isgreater or isless and called

stub functions for each side of the conditional in order to

resolve this. In addition, we explicitly avoided extracting

vector components during computation by utilizing vector

operations for all computation to eliminate forced reloading

of the same vector from memory.

vmovaps YMM0, YMMWORD PTR [RIP + .
LCPI16_0]

vdivps YMM0, YMM0, YMMWORD PTR [R12
+ R13]

mov RAX, QWORD PTR [RBP + 24]
vmovaps YMMWORD PTR [RAX + R13], YMM0
mov RAX, QWORD PTR [RBP + 32]
vmovaps YMM0, YMMWORD PTR [RAX + R13]
vmaxps YMM0, YMM0, YMMWORD PTR [RIP

+ .LCPI16_1]
vmovaps YMMWORD PTR [RSP], YMM0 # 32-

byte Spill

Listing 4. Intel OpenCL Offline Compiler output of assembly on Intel
Core i7 with explicit AVX.

vmovq XMM0, RAX
vmovlhps XMM0, XMM0, XMM0
vmovaps XMMWORD PTR [RSP + 192], XMM0
vmovaps YMM1, YMMWORD PTR [RIP + .

LCPI9_0]
vextractf128 XMM2, YMM1, 1
vpaddq XMM2, XMM0, XMM2
vpshufd XMM2, XMM2, 8
vmovaps YMMWORD PTR [RSP + 160], YMM1

Listing 5. Intel OpenCL Offline Compiler output of assembly on Intel
Core i7 WITHOUT explicit AVX.

Listings 4 and 5 indicate the difference in usage of

registers; both listings show the same assembly. However,

our results indicate a 5% to 10% speed improvement over

the original parallel OpenCL code. The main reason that

our speedup was not as much as expected was due to the

time it took SOLUV to run compared to SOLIR; SOLUV

only takes about 10% to 15% of the total runtime while

SOLIR took 70% to 80% of the total runtime. We plan to

further explore manual usage of AVX vector data types by

converting SOLIR to utilize float8 as well.

The Intel Core 2 Duo did not show the performance

improvements as seen in the Intel Core i7 and Xeon. We

suspect this is due to an older version of Intel OpenCL SDK

on Mac OSX (Table I). This older Intel OpenCL SDK could

have a premature implementation of implicit vectorization

compared to the 1.5 SDK and additionally the Core 2 Duo

only supports SSE 4.1 intrinsic, which contains a limited

set of SSE instructions and registers, therefore resulting in

less performing assembly code. Currently, Intel OpenCL

SDK 1.5 does not support Mac OSX so we are not able

to fully investigate the reasons behind the results seen in the

Intel Core 2 Duo. It may also be of interest to output the

assembly of the executable on Mac OSX in order to confirm

the existence of any vectorization.

VIII. CONCLUSION

We have developed a single parallel OpenCL code for

a representative climate and weather physics model that is

able to run across multiple different platforms with dramatic

performance improvement. These dramatic speedups in CPU

demonstrate that OpenCL provides an interface to implement

light-weight multi-threaded code on CPUs. OpenCL pro-

vides access to a multi-threaded programming and execution

model while providing a lower level memory and thread

management similar to that of CUDA for NVIDIA GPUs.

The autovectorization capabilities of the OpenCL compilers

across platforms enabled significant improvement gains. Our

results demonstrate that code and performance portability of

OpenCL on newer Intel and NVIDIA platforms is promising.
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f o r ( l = 0 ; l <= NLM + 1 ; l ++)
temp dev rxa = r x a [ s t r i d e 5 D + l ∗NM BLOCK+k ] ;
t e m p d e v r r a = r r a [ s t r i d e 5 D + l ∗NM BLOCK+k ] ;

denm = 1 . 0 / (1.0− d e v r s a 0 ∗ t emp dev rxa ) ;
xx = d e v t d a 0 ∗ t e m p d e v r r a ;
yy = d e v t t a 0−d e v t d a 0 ;
t e m p f d n d i f = ( xx∗ d e v r s a 0 +yy ) ∗denm ;
f u p d i f = ( xx+yy∗ t emp dev rxa ) ∗denm ;
f l x d n [ l ∗NM BLOCK+k ] = d e v t d a 0 + t e m p f d n d i f−

f u p d i f ;

i f ( l == (NLM+1) )
f d n d i r [ k ] = d e v t d a 0 ;
f d n d i f [ k ] = t e m p f d n d i f ;

i f ( l < (NLM+1) )
t e m p r r = r r [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;
t emp rs = r s [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;
t emp td = t d [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;
t e m p t s = t s [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;
t e m p t t = t t [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;

denm = t e m p t s / ( 1 . 0 − d e v r s a 0 ∗ t emp rs ) ;
d e v t d a 1 = d e v t d a 0 ∗ t emp td ;
d e v t t a 1 = d e v t d a 0 ∗ t e m p t t +( d e v t d a 0 ∗ d e v r s a 0

∗ t e m p r r + d e v t t a 0−d e v t d a 0 ) ∗denm ;
d e v r s a 1 = temp rs + t e m p t s ∗ d e v r s a 0 ∗denm ;

d e v t d a 0 = d e v t d a 1 ;
d e v t t a 0 = d e v t t a 1 ;
d e v r s a 0 = d e v r s a 1 ;

Listing 6. upKernel: First kernel out of three produced to break data
dependence in the serial CLDFLX code. Loops up the columns (0 to
NLM+1) to update tda, tta, rsa. Integers stride3D, stride5D are manually
calculated for strided memory accesses to multidimensional arrays.

i n t mask1 [ 8 ] = {0 , 1 , 0 , 1 , 0 , 1 , 0 , 1} ;
i n t mask2 [ 8 ] = {0 , 0 , 1 , 1 , 0 , 0 , 1 , 1} ;
i n t mask3 [ 8 ] = {0 , 0 , 0 , 0 , 1 , 1 , 1 , 1} ;
i = g e t g l o b a l i d ( 0 ) ; j = g e t g l o b a l i d ( 1 ) ;
i h = mask1 [ j ] ;
im = mask2 [ j ] ;
i s = mask3 [ j ] ;

k = j ∗16+ i ;

s t r i d e 3 D = i h ∗ (NLM+2)∗NM BLOCK;
s t r i d e 5 D = i s ∗2∗ (NLM+2)∗NM BLOCK+im ∗ (NLM+2)∗

NM BLOCK;
temp = r r [ i s ∗ (NLM+2)∗NM BLOCK+(NLM+1)∗NM BLOCK+k ] ;
r r a [ i s ∗2∗ (NLM+2)∗NM BLOCK+im ∗ (NLM+2)∗NM BLOCK+(NLM

+1)∗NM BLOCK+k ] = temp ;
r x a [ i s ∗2∗ (NLM+2)∗NM BLOCK+im ∗ (NLM+2)∗NM BLOCK+(NLM

+1)∗NM BLOCK+k ] = temp ;
d e v r r a 0 = temp ;
dev rxa0 = temp ;

f o r ( l =NLM; l >=0; l−−)
t e m p r r = r r [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;
t emp rs = r s [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;
t emp td = t d [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;
t e m p t s = t s [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;
t e m p t t = t t [ s t r i d e 3 D + l ∗NM BLOCK+k ] ;
denm = t e m p t s / (1 .0− t emp rs∗ dev rxa0 ) ;
d e v r r a 1 = t e m p r r +( temp td∗ d e v r r a 0 +( t e m p t t−

t emp td ) ∗ dev rxa0 ) ∗denm ;
dev rxa1 = temp rs + t e m p t s ∗ dev rxa0∗denm ;
r r a [ s t r i d e 5 D + l ∗NM BLOCK+k ] = d e v r r a 1 ;
r x a [ s t r i d e 5 D + l ∗NM BLOCK+k ] = dev rxa1 ;
d e v r r a 0 = d e v r r a 1 ;
dev rxa0 = dev rxa1 ;

Listing 7. downKernel: Second kernel out of three produced to break
data dependence in the CLDFLX code. Loops down the columns (NLM
to 0) to update rra, rxa. The integers ih, im, is are the resulting bits from
the bitmasks in order to simulate 8 different weather configurations on 3
different levels on clear and/or cloudy weather.

i n t mask1 [ 8 ] = {0 , 1 , 0 , 1 , 0 , 1 , 0 , 1} ;
i n t mask2 [ 8 ] = {0 , 0 , 1 , 1 , 0 , 0 , 1 , 1} ;
i n t mask3 [ 8 ] = {0 , 0 , 0 , 0 , 1 , 1 , 1 , 1} ;
mb = g e t g l o b a l i d ( 0 ) ;
l = g e t g l o b a l i d ( 1 ) ;
k = g e t g l o b a l i d ( 2 ) ;

i h = mask1 [ k ] ;
im = mask2 [ k ] ;
i s = mask3 [ k ] ;

f c l r [ l ∗NM BLOCK+mb]= f l x d n [ ( l +1) ∗ (NM BLOCK+1)+mb ] ;
f a l l [ l ∗NM BLOCK+mb]= f a l l [ l ∗NM BLOCK+mb]+ f l x d n [ ( l

+1) ∗ (NM BLOCK+1)+mb]∗ c t D a t a [ ( i h ∗4+im∗2+ i s ∗1)
∗128+mb ] ;

Listing 8. reductionKernel: Final kernel produced to break data
dependence in the serial CLDFLX code. ctData is the precomputed array
used to eliminate dependencies across bitmasks.
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