
Exploring Open End-to-End Systems-centric Profiling and 
Benchmarking of Inference-oriented Services 

1. Project Description 
 
Machine Learning (ML) is rapidly being integrated and used in computational services.  A 
prominent example is the use of Large Language Models (LLMs) in various applications.  Every 
day, a new use and architecture for their integration is proposed [1].   LLMs and their use 
indicate why, more generally, we can expect ML model-based computation to be a dominant 
component of all applications.   ML model-based computation can be divided into two phases – 
training and inference.  In the training phase, significant computational resources are used to 
mine massive amounts of data to construct an artifact we call a model.  In the inference phase, 
the model is “evaluated” by making “queries” with application-specific input data to produce 
responses utilized within the broader application.   Despite rapid industrialization, the core 
architecture of how models are constructed and represented through training is very much an 
open area of research.  As an example, while “Transformers” [2] are a dominant architecture 
now, there is growing evidence that other architectures may be equal, if not better, both in 
functionality and efficiency [3, 4]. One should expect that the details of how models are trained, 
represented, and evaluated will change. Thus, we should be ready to assess and optimize the 
ML computational infrastructure in this changing landscape.   
 
As systems researchers and scientists, we must establish methodologies and data that can help 
ensure that the end-to-end systems constructed using ML model-based computation can be 
evaluated for traditional system concerns such as scalability, hardware efficiency, reliability, and 
performance. Despite the ever-evolving nature of ML model-based computation, there is a 
modular path that can allow systems researchers to help guide the development of future LLM 
systems meaningfully.  
 

So what can we do? 
 
While there is significant churn in the specifics of the ML architectures, one can observe that all 
ML model-based approaches must roughly conform to the same external interface and 
observable functionality for inference.  The inference component must provide a 
request-reply-like interface to the larger application being constructed. From this perspective, 
we can exploit this stability to apply standard system approaches to creating a framework and 
methodology for profiling and evaluating different ML inference configurations of software and 
hardware.   
 

1.​ Carefully construct a reproducible and auditable environment where the entire service for 
the proposed ML model-based computation can be deployed.  This includes being 



precise and transparent concerning all software and hardware being used.    Thus, 
claims that one hardware or software component is superior for inference can be 
evaluated comparably.   

2.​ Define workloads and performance metrics concerning the end-to-end application that 
the ML model is used within, enabling fair and meaningful evaluation of the impacts of 
one ML setup compared to another.   For example, in the case of an LLM-based 
application such as a chatbot,  one should not simply evaluate model inference 
throughput.  Instead, one should carefully define end-to-end latency measures that 
reflect the global impact of the ML software and hardware configuration on the complete 
chatbot service.  

3.​ Gather detailed data traces that capture the behavior of all hardware and software 
components.   

Proposal  
 
The goal is to construct a testbed and gather data that help inform optimization in LLM systems.  

Outcomes 

High-level outcomes of the proposed work 
1.​ A data set that documents the behavior of following LLM application  on hardware and 

software combinations: 
a.​ Different NVIDIA GPUs, running LLMs on single GPU, multiple GPUs, along with 

sharding a single GPU (using Multi-Instance GPU) 
b.​ Different CPU processors 
c.​ Different OSes with different kernel versions. 

2.​ The construction of an end-to-end benchmark in which a stream of application queries 
can be generated conforming to a particular distribution of query complexity (Eg, context 
length) and query arrival times.   Accordingly, benchmark performance will be expressed 
as an achieved response latency distribution that accounts for query complexity.  Current 
approaches to LLM evaluation report latency to the first response token and 
inter-response token latency.   These measures are flawed as they do not account for 
input context length and output length dependency, nor do they reflect the total service 
time (e.g., I/O, pre-and post-processing).  

3.​ Exploit detailed nature of trace data to identify possible avenues for optimization in the 
OS and LLM system 

4.​ A systems model for evaluating ML model-based applications beyond the LLM ones 
concretely evaluated.  

 
Benchmark 
Our initial benchmark set consist of running the following Cartesian product: 
{models} x {batch size} x {workloads} x {LLM-runtimes} 
 
with: 
{models} = {OPT-13B/66B/175B, LLaMA 3.1 8B/70B/405B} 

https://huggingface.co/docs/transformers/en/model_doc/opt
https://llama.meta.com/llama-downloads/


{batch size} = {1, 2, 4, 8, 16, 32, 64} 
{workloads} = {ShareGPT, Alpaca} 
{LLM-runtimes} = {vLLM, llama.cpp, vanilla pytorch, NVIDIA Triton} 
 
This can be expanded to explore this in the context of other GPUs and architectures from 
previous generations and other specialized models for use cases such as SegmentAnything 2 
(image segmentation), OpenSora (video generation), Sapiens (human oriented vision tasks e.g. 
depth estimation, pose estimation). 
 
Metrics and Logging 
In contrast to other works [5,7,8,9] that typically focus on documenting the end-to-end 
performance of the LLM systems, we intend to conduct a rigorous analysis and understanding 
of both OS software and hardware. To achieve this, we intend to utilize tools such as NVIDIA 
Nsight Systems and NVIDIA Nsight Compute to accurately profile both the LLM systems from 
both the OS perspective and the GPU processing perspective in order to gather a set of detailed 
traces of systems behavior. We also intend to gather classical OS metrics such as caches, 
memory, paging, and other hardware components such as the NICs, SSDs, HDDs in order to 
provide a holistic view of how GPU runs with the different models, workloads, LLM-runtimes and 
its interactions with the host OS and its components. 
 
Automation and Data Curation 
We intend to document and open-source all of the tooling, scripts, and data for this endeavor so 
that other users can build upon our work to better evaluate and understand new LLM training 
and inferencing technologies as well as any future hardware and software advancements.  
 

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://github.com/vllm-project/vllm
https://github.com/ggerganov/llama.cpp
https://developer.nvidia.com/triton-inference-server
https://github.com/facebookresearch/segment-anything-2
https://github.com/hpcaitech/Open-Sora
https://github.com/facebookresearch/sapiens


2. Interesting Result on A100 

 
The forward pass stage of inferencing typically consists of very SIMD-friendly operations across 
multiple large vectors that are copied back and forth to the GPU. We began with a small 
microbenchmark that used a simple vector addition to understand and explore the use of 4 KB 
and 2 MB page sizes and how it impacts the hostToDevice and deviceToHost CUDA memcpy 
time. As the vector memory is typically backed by pages in the host OS, we were curious what 
the benefits were to reducing extraneous page faults through explicit use of larger page sizes. 
 
Example vector addition: 
__global__ void vectorAdd(const double *A, const double *B, double *C, unsigned long long int 
numElements) { 
  unsigned long long int i = blockDim.x * blockIdx.x + threadIdx.x; 
 
  if (i < numElements) { 
    C[i] = A[i] + B[i] + 0.0f; 
  } 
} 
 
Example memory mapped vectors with different page sizes: 
#ifdef FOURKB 
  double *h_A = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 
  double *h_B = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 
  double *h_C = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 
#elif TWOMB 
  double *h_A = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | 
MAP_HUGETLB | MAP_HUGE_2MB, -1, 0); 



  double *h_B = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | 
MAP_HUGETLB | MAP_HUGE_2MB, -1, 0); 
  double *h_C = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | 
MAP_HUGETLB | MAP_HUGE_2MB, -1, 0); 
#elif ONEGB 
  double *h_A = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | 
MAP_HUGETLB | MAP_HUGE_1GB, -1, 0); 
  double *h_B = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | 
MAP_HUGETLB | MAP_HUGE_1GB, -1, 0); 
  double *h_C = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | 
MAP_HUGETLB | MAP_HUGE_1GB, -1, 0); 
#endif 

 
Results: 

 
 
We found a 1.7X - 2X CUDA memcpy speed difference between 4 KB and 2 MB pages when 
coping from the Host to the GPU device. Interestingly, there is also a dramatic difference when 
copying from GPU device to Host when moving to a 1 GB page size. However, a caveat is that 
Linux by default uses 2 MB pages with Transparent Hugepages support, so the 4 KB result is 
mostly unrealistic. However, there is still something interesting and requires more investigation 
with the 2 MB to 1 GB setup given the difference in device to host copying time.  
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