
Exploring Open End-to-End Systems-centric Profiling and
Benchmarking of Inference-oriented Services

1. Project Description

Machine Learning (ML) is rapidly being integrated and used in computational services. A
prominent example is the use of Large Language Models (LLMs) in various applications. Every
day, a new use and architecture for their integration is proposed [1]. LLMs and their use
indicate why, more generally, we can expect ML model-based computation to be a dominant
component of all applications. ML model-based computation can be divided into two phases –
training and inference. In the training phase, significant computational resources are used to
mine massive amounts of data to construct an artifact we call a model. In the inference phase,
the model is “evaluated” by making “queries” with application-specific input data to produce
responses utilized within the broader application. Despite rapid industrialization, the core
architecture of how models are constructed and represented through training is very much an
open area of research. As an example, while “Transformers” [2] are a dominant architecture
now, there is growing evidence that other architectures may be equal, if not better, both in
functionality and efficiency [3, 4]. One should expect that the details of how models are trained,
represented, and evaluated will change. Thus, we should be ready to assess and optimize the
ML computational infrastructure in this changing landscape.

As systems researchers and scientists, we must establish methodologies and data that can help
ensure that the end-to-end systems constructed using ML model-based computation can be
evaluated for traditional system concerns such as scalability, hardware efficiency, reliability, and
performance. Despite the ever-evolving nature of ML model-based computation, there is a
modular path that can allow systems researchers to help guide the development of future LLM
systems meaningfully.

So what can we do?

While there is significant churn in the specifics of the ML architectures, one can observe that all
ML model-based approaches must roughly conform to the same external interface and
observable functionality for inference. The inference component must provide a
request-reply-like interface to the larger application being constructed. From this perspective,
we can exploit this stability to apply standard system approaches to creating a framework and
methodology for profiling and evaluating different ML inference configurations of software and
hardware.

1.​ Carefully construct a reproducible and auditable environment where the entire service for
the proposed ML model-based computation can be deployed. This includes being

precise and transparent concerning all software and hardware being used. Thus,
claims that one hardware or software component is superior for inference can be
evaluated comparably.

2.​ Define workloads and performance metrics concerning the end-to-end application that
the ML model is used within, enabling fair and meaningful evaluation of the impacts of
one ML setup compared to another. For example, in the case of an LLM-based
application such as a chatbot, one should not simply evaluate model inference
throughput. Instead, one should carefully define end-to-end latency measures that
reflect the global impact of the ML software and hardware configuration on the complete
chatbot service.

3.​ Gather detailed data traces that capture the behavior of all hardware and software
components.

Proposal

The goal is to construct a testbed and gather data that help inform optimization in LLM systems.

Outcomes

High-level outcomes of the proposed work
1.​ A data set that documents the behavior of following LLM application on hardware and

software combinations:
a.​ Different NVIDIA GPUs, running LLMs on single GPU, multiple GPUs, along with

sharding a single GPU (using Multi-Instance GPU)
b.​ Different CPU processors
c.​ Different OSes with different kernel versions.

2.​ The construction of an end-to-end benchmark in which a stream of application queries
can be generated conforming to a particular distribution of query complexity (Eg, context
length) and query arrival times. Accordingly, benchmark performance will be expressed
as an achieved response latency distribution that accounts for query complexity. Current
approaches to LLM evaluation report latency to the first response token and
inter-response token latency. These measures are flawed as they do not account for
input context length and output length dependency, nor do they reflect the total service
time (e.g., I/O, pre-and post-processing).

3.​ Exploit detailed nature of trace data to identify possible avenues for optimization in the
OS and LLM system

4.​ A systems model for evaluating ML model-based applications beyond the LLM ones
concretely evaluated.

Benchmark
Our initial benchmark set consist of running the following Cartesian product:
{models} x {batch size} x {workloads} x {LLM-runtimes}

with:
{models} = {OPT-13B/66B/175B, LLaMA 3.1 8B/70B/405B}

https://huggingface.co/docs/transformers/en/model_doc/opt
https://llama.meta.com/llama-downloads/

{batch size} = {1, 2, 4, 8, 16, 32, 64}
{workloads} = {ShareGPT, Alpaca}
{LLM-runtimes} = {vLLM, llama.cpp, vanilla pytorch, NVIDIA Triton}

This can be expanded to explore this in the context of other GPUs and architectures from
previous generations and other specialized models for use cases such as SegmentAnything 2
(image segmentation), OpenSora (video generation), Sapiens (human oriented vision tasks e.g.
depth estimation, pose estimation).

Metrics and Logging
In contrast to other works [5,7,8,9] that typically focus on documenting the end-to-end
performance of the LLM systems, we intend to conduct a rigorous analysis and understanding
of both OS software and hardware. To achieve this, we intend to utilize tools such as NVIDIA
Nsight Systems and NVIDIA Nsight Compute to accurately profile both the LLM systems from
both the OS perspective and the GPU processing perspective in order to gather a set of detailed
traces of systems behavior. We also intend to gather classical OS metrics such as caches,
memory, paging, and other hardware components such as the NICs, SSDs, HDDs in order to
provide a holistic view of how GPU runs with the different models, workloads, LLM-runtimes and
its interactions with the host OS and its components.

Automation and Data Curation
We intend to document and open-source all of the tooling, scripts, and data for this endeavor so
that other users can build upon our work to better evaluate and understand new LLM training
and inferencing technologies as well as any future hardware and software advancements.

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://github.com/vllm-project/vllm
https://github.com/ggerganov/llama.cpp
https://developer.nvidia.com/triton-inference-server
https://github.com/facebookresearch/segment-anything-2
https://github.com/hpcaitech/Open-Sora
https://github.com/facebookresearch/sapiens

2. Interesting Result on A100

The forward pass stage of inferencing typically consists of very SIMD-friendly operations across
multiple large vectors that are copied back and forth to the GPU. We began with a small
microbenchmark that used a simple vector addition to understand and explore the use of 4 KB
and 2 MB page sizes and how it impacts the hostToDevice and deviceToHost CUDA memcpy
time. As the vector memory is typically backed by pages in the host OS, we were curious what
the benefits were to reducing extraneous page faults through explicit use of larger page sizes.

Example vector addition:
__global__ void vectorAdd(const double *A, const double *B, double *C, unsigned long long int
numElements) {
 unsigned long long int i = blockDim.x * blockIdx.x + threadIdx.x;

 if (i < numElements) {
 C[i] = A[i] + B[i] + 0.0f;
 }
}

Example memory mapped vectors with different page sizes:
#ifdef FOURKB
 double *h_A = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 double *h_B = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 double *h_C = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
#elif TWOMB
 double *h_A = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS |
MAP_HUGETLB | MAP_HUGE_2MB, -1, 0);

 double *h_B = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS |
MAP_HUGETLB | MAP_HUGE_2MB, -1, 0);
 double *h_C = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS |
MAP_HUGETLB | MAP_HUGE_2MB, -1, 0);
#elif ONEGB
 double *h_A = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS |
MAP_HUGETLB | MAP_HUGE_1GB, -1, 0);
 double *h_B = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS |
MAP_HUGETLB | MAP_HUGE_1GB, -1, 0);
 double *h_C = (double *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS |
MAP_HUGETLB | MAP_HUGE_1GB, -1, 0);
#endif

Results:

We found a 1.7X - 2X CUDA memcpy speed difference between 4 KB and 2 MB pages when
coping from the Host to the GPU device. Interestingly, there is also a dramatic difference when
copying from GPU device to Host when moving to a 1 GB page size. However, a caveat is that
Linux by default uses 2 MB pages with Transparent Hugepages support, so the 4 KB result is
mostly unrealistic. However, there is still something interesting and requires more investigation
with the 2 MB to 1 GB setup given the difference in device to host copying time.

Bibliography
[1] https://www.assemblyai.com/blog/llm-use-cases/
[2] https://jalammar.github.io/illustrated-transformer/
[3] https://arxiv.org/abs/2010.11929
[4] https://lilianweng.github.io/posts/2023-01-27-the-transformer-family-v2/
[5] Efficient Memory Management for Large Language Model Serving with PagedAttention
[6] ​​https://arxiv.org/pdf/2407.07000
[7] https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
[8]
https://www.confident-ai.com/blog/evaluating-llm-systems-metrics-benchmarks-and-best-practic
es

https://www.assemblyai.com/blog/llm-use-cases/
https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2010.11929
https://lilianweng.github.io/posts/2023-01-27-the-transformer-family-v2/
https://arxiv.org/pdf/2309.06180
https://arxiv.org/pdf/2407.07000
https://www.redhat.com/en/blog/evaluating-llm-inference-performance-red-hat-openshift-ai
https://www.confident-ai.com/blog/evaluating-llm-systems-metrics-benchmarks-and-best-practices
https://www.confident-ai.com/blog/evaluating-llm-systems-metrics-benchmarks-and-best-practices

	Exploring Open End-to-End Systems-centric Profiling and Benchmarking of Inference-oriented Services
	1. Project Description
	So what can we do?
	Proposal
	Outcomes

	2. Interesting Result on A100
	Bibliography

