
SREcon25 Europe/Middle East/Africa registration is open!

Register Now

A Tutorial on Building
Custom Linux
Appliances

December 14, 2021

Tutorial

Authors:

Han Dong, Jonathan Appavoo

Article shepherded by:

Rik Farrow

Experimentally evaluating what runtime effects a change to a software

component is a surprisingly difficult task. This is true regardless if the

Menu

Join the conversation

Back to ;login: Online

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 1/30

https://www.usenix.org/conference/srecon25emea
https://www.usenix.org/
https://www.usenix.org/
https://www.usenix.org/publications/loginonline

component being changed is within the kernel, a kernel module, user

library or application software. As is the case with all experimental

efforts, one important step is to control as many external and non-

deterministic perturbations as possible. This allows one to gather base

line results and gain confidence that measured values are causally

related to the change itself and not simply the result of system noise.

After this, one can then evaluate the change in progressively noisy

settings that may reflect more realistic deployments with the

knowledge of the base line results. This approach is especially

important when doing systems research to ensure that effect of

proposed changes are soundly quantified both in terms of reproducible

and causally explainable results.

As discussed in a recent ;login: article, almost all modern systems

research is conducted on Linux; which typically implies a flavor such as

Ubuntu, Fedora, etc. Today's Linux software environment is typically

packaged in a complex standard distribution, furthermore, it is also not

always clear how much effort researchers have taken to remove as

many extraneous processes and kernel modules as possible to ensure

a clean and stable Linux environment. At first glance, it might seem

that it requires a heroic effort to construct a minimal execution setup;

this tutorial demonstrates that it is surprisingly easy to get simple

environment setup. As a motivating example, my ThinkPad laptop

running Fedora 24 with Linux v5.14.15 idles with 297 processes and

159 kernel modules loaded. On the same laptop, I also booted a

custom Linux appliance running Linux v5.14.1 that idles with 100

processes and 0 kernel modules loaded.

Linux appliances are a relatively old idea [10], often understood as a

self-contained system image containing just enough software and

operating systems support to run a single application. In this article, I

explain how to create such a Linux appliance suitable for running

benchmarks on a minimal system, thereby avoiding running the long list

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 2/30

https://www.usenix.org/publications/loginonline/musings-operating-systems-research

of standard processes that can perturb systems tests. Furthermore, as

the root filesystem of the Linux appliance is loaded as a RAM disk by

default, this can further reduce system noises such as disk paging.

Goals

There are many tutorials online to build your own Linux kernel and a

root filesystem used for booting the kernel, often called the initramfs

[1, 2, 3, 5, 6, 7]. However, their use cases are typically too general and

the steps involved can be quite complex. This tutorial will demonstrate

that it is in fact surprisingly easy to get a barebones Linux up and

running that is ready to execute some simple programs. Concretely,

here are the general steps that this tutorial covers: 1) Creating an

initramfs, 2) Building/Configuring a Linux kernel from source and device

drivers, 3) Getting programs to run, and 4) Booting the appliance.

Preparation

Here's a general breakdown of what is required on your end: 1) you

should have a testing machine that will be booting the Linux appliance,

2) you should install a pre-existing Linux flavor on your machine (i.e.

Fedora, etc), and 3) have your machine connected via Ethernet

(optional).

Notes

Having a pre-existing OS on your testing machine is important. You

want your system to be in a state to test out the intended programs

and to install extra packages.

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 3/30

One key difference between this tutorial and many others is that we

will be simplying copying existing system libraries and programs to

get a functional Linux system rather than using a tool such as

busybox.

Step 1: Create initial
initramfs structure

On your testing machine, open a terminal and run sudo -s to start

working as root. Next, export the name for the initramfs by running

export LFS=~/initfs. Run the code snippet below to create an

initial directory structure; these directories are typically where default

system libraries are placed (details here).

mkdir -pv $LFS

mkdir -pv $LFS/{etc,var} $LFS/usr/{bin, l ib,sbin}

for i in bin l ib sbin; do

 ln -sv usr/$i $LFS/$i

done

case $(uname -m) in

 x86_64) mkdir -pv $LFS/l ib64 ; ;

esac

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 4/30

https://www.busybox.net/
https://www.linuxfromscratch.org/lfs/view/stable/chapter04/creatingminlayout.html

Create initial directory structure

Step 2: Getting programs
to run

After you've created the directory structure above, the chroot
program can then be used to test out $LFS filesystem. However, as the

filesystem itself is bare without any programs in it, you should see the

following error when running chroot $LFS:

chroot: failed to run command '/bin/bash': No such
file or directory

To get chroot $LFS working, follow the snippet of code below:

[root@ ~]# chroot $LFS

chroot: fai led to run command '/bin/bash' : No such fi le or directory

figure out where bash l ives

[root@ ~]# which bash

/usr/bin/bash

copy bash to correct directory in $LFS

[root@ ~]# cp /usr/bin/bash $LFS/usr/bin/

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 5/30

get l ibrary dependencies of bash

[root@ ~]# ldd /usr/bin/bash

 l inux-vdso.so.1 (0x00007ffd6ffa6000)

 l ibtinfo.so.6 => /l ib64/l ibtinfo.so.6 (0x00007f8e3751b000)

 l ibdl .so.2 => /l ib64/l ibdl .so.2 (0x00007f8e37514000)

 l ibc.so.6 => /l ib64/l ibc.so.6 (0x00007f8e37345000)

 / l ib64/ld-l inux-x86-64.so.2 (0x00007f8e376bc000)

copy over l ibraries to correct location, skip l inux-vdso.so.1 as the

[root@ ~]# cp /l ib64/l ibtinfo.so.6 $LFS/l ib64/

[root@ ~]# cp /l ib64/l ibdl .so.2 $LFS/l ib64/

[root@ ~]# cp /l ib64/l ibc.so.6 $LFS/l ib64/

[root@ ~]# cp /l ib64/ld-l inux-x86-64.so.2 $LFS/l ib64/

/bin/bash should work now with $LFS

[root@ ~]# chroot $LFS

bash-5.1#

Getting /bin/bash to work

A script to automate the copying of programs and its libraries

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 6/30

To get other programs running, you will need to follow similar steps as

shown above and these programs will have different dependencies on

libraries and other files, etc. To help automate these steps, a simple

script is provided below:

[root@ ~]# cat copy_appliance_l ibs

#!/bin/bash

export MYINIT=${MYINIT:=' ' }

export BINS=${BINS:=' ' }

for bins in ${BINS}; do

 echo $bins

 ## figure out where program l ives

 bins_loc=$(which $bins)

 bins_dir_loc=$(which $bins | xargs -I ' {} ' dirname '{} ')

 ## if program does not exist in initramfs

 if [[! -e "${MYINIT}/${bins_loc}"]] ; then

echo $bins_loc

echo "${MYINIT}/${bins_dir_loc}"

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 7/30

set up directory and copy programs to initramfs

[[-e "${MYINIT}/${bins_dir_loc}"]] | | mkdir -p "${MYINIT}/${bins_

cp $bins_loc "${MYINIT}/${bins_dir_loc}"

figure out l ibrary dependencies of $bins

l ibs_loc=$(ldd $bins_loc | grep "=> /" | awk '{print $3}')

set up directory and copy l ibs to initramfs

for l ibs in ${l ibs_loc}; do

 l ibs_dir=$(dirname $l ibs)

 ## if l ibrary does not exist in initramfs

 if [[! -e "${MYINIT}/${l ibs}"]] ; then

echo $l ibs

[[-e "${MYINIT}/${l ibs_dir}"]] | | mkdir -p "${MYINIT}/${l ibs_

cp $l ibs "${MYINIT}/${l ibs_dir}"

 f i

done

echo "+++++++++++++"

 f i

done

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 8/30

Example usage: MYINIT=$LFS BINS="ls cd" ./copy_appliance_libs

Notes

Just copying the libraries may not be enough to get all programs

running, sometimes strace is needed to figure out what other files

your program is accessing through system calls such as openat(),
read(), access(). Then you'll need to either create or copy

these files from the existing system - this part can get tricky!

Keep in mind that sometimes the system libraries can also have

dependencies on other libraries.

Step 3: Create the rest of
the initramfs structure

First, use the script above to automatically copy the following programs

to the initramfs: ls cd pwd cat mount umount mkdir mknod
cp mv install ln touch chgrp chmod poweroff reboot
readlink ip dhclient ps wc uname hostname more tail
head grep find df free

Next, run

chroot $LFS

to get safely inside the chroot environment and run the following

snippets of code to create the rest of the filesystem structure. The

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 9/30

steps below are slightly modified from Chapter 7 of Linux From Scratch

[7].

Important: The following steps involve creating files and folders under

the / directory, so be sure to first run chroot $LFS to get safely inside

the chroot environment, else you may accidentally wipe your existing

Linux system.

mkdir -pv /{dev,proc,sys,run}

mkdir -pv /dev/pts

mknod -m 600 /dev/console c 5 1

mknod -m 666 /dev/nul l c 1 3

Setup virtual kernel filesystems

mkdir -pv /{boot,home,mnt,opt,srv}

mkdir -pv /etc/{opt,sysconfig}

mkdir -pv /l ib/firmware

mkdir -pv /media/{floppy,cdrom}

mkdir -pv /usr/{ , local/}{ include,src}

mkdir -pv /usr/local/{bin, l ib,sbin}

mkdir -pv /usr/{ , local/}share/{color,dict ,doc, info, locale,man}

mkdir -pv /usr/{ , local/}share/{misc,terminfo,zoneinfo}

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 10/30

mkdir -pv /usr/{ , local/}share/man/man{1 . .8}

mkdir -pv /var/{cache, local , log,mail ,opt,spool}

mkdir -pv /var/l ib/{color,misc, locate}

instal l -dv -m 0750 /root

instal l -dv -m 1777 /tmp /var/tmp

ln -sv /proc/self/mounts /etc/mtab

touch /var/log/{btmp,lastlog,fai l log,wtmp}

chgrp -v utmp /var/log/lastlog

chmod -v 664 /var/log/lastlog

chmod -v 600 /var/log/btmp

Create the rest of the directories

cat > /etc/hosts << EOF

127.0.0.1 localhost myinitfs

: : 1 localhost

EOF

cat > /etc/passwd << EOF

root:x :0:0:root:/root:/bin/bash

EOF

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 11/30

cat > /etc/group << EOF

root:x :0:

bin:x :1 :daemon

sys:x:2:

kmem:x:3:

tape:x:4:

tty:x :5:

daemon:x:6:

f loppy:x:7 :

disk:x :8:

lp:x :9:

dialout:x :10:

users:x :999:

EOF

Set up root user and groups

Step 4: Create startup /init
script for the appliance

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 12/30

After following the previous steps to ensure a basic set of programs are

runnable in your appliance, the next step is to create the startup file

that is essentially the program that Linux runs to initiate the rest of the

system. Modern systems have generally migrated to use systemd as

the bootstrapping program due to its comprehensive set of tools.

However, this tutorial will instead use the older init script as it is 1)

simpler to edit, and 2) enables greater control to begin automating

experiments. While still in chroot environment, run the code below to

create the /init file:

cat > /init << EOF

#!/bin/bash

export HOME=/root

export LOGNAME=root

export TERM=vt100

export PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin

export ENV="HOME=\$HOME LOGNAME=\$LOGNAME TERM=\$TERM PA

setup standard f i le system view

mount -t proc /proc /proc

mount -t sysfs /sys /sys

mount -t devpts devpts /dev/pts

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 13/30

https://systemd.io/
https://en.wikipedia.org/wiki/Init

Some things don't work properly without /etc/mtab.

ln -sf /proc/mounts /etc/mtab

if we get here then we might as well start a shel l :-)

/bin/bash

if bash fai ls, shuts off machine

poweroff -f

EOF

/init file creation

After that, set permissions by running chmod 755 /init. Next, exit
out of chroot environment and cd $LFS in order to compress the

initramfs into the cpio format by running:

find . | cpio -o -H newc > ../myinitfs.cpio

To make this as a bootable option, run

cp ../myinitfs.cpio /boot

Step 5: Building the Linux
kernel

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 14/30

First, make sure you have the necessary packages installed to build a

Linux kernel from source, see [8, 9], you can skip this step by taking an

existing Linux kernel image at /boot/vmlinuz-* and head to Step 6 to

boot it. Though, building from source enables greater control over its

configuration setup.

To start, run uname -r on your existing system to get its version

information and download a tarball of that version at the kernel.org

website. This doesn't need to be exactly the same, i.e. my machine runs

5.14.15-200.fc34.x86_64 and the 5.14.1 tarball still worked.

After you download and unzip the Linux kernel, cd into the kernel

directory and run

make menuconfig

to generate a default .config file. Next, to prep the kernel build run:

make prepare && make modules_prepare

Then, to build the bootable kernel image, run

make -j bzImage

This process will take a while and eventually you will see the following

success message (you may see an error(s) regarding the need to

disable certain options in menuconfig; if so, do it and then rerun make
-j bzImage):

Kernel: arch/x86/boot/bzImage is ready

At this point, make the bzImage be bootable by copying it to /boot:

cp arch/x86/boot/bzImage /boot

Custom kernel configurations

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 15/30

https://www.kernel.org/pub/linux/kernel

Not covered in this tutorial is the importance to customize your

Linux kernel configurations. A very interesting study: "An analysis of

performance evolution of Linux's core operations", has provided a

nice list of kernel configuration options you may want to disable for

performance reasons.

Step 6: Booting the Linux
appliance

Next, the created initramfs and Linux kernel image are added to GRUB

as bootable options. Dependent on the Linux flavor, these approaches

might be slightly different (e.g. Ubuntu, Fedora). On my Fedora install,

the file at /etc/grub.d/40_custom was modifed with a new

menuentry option that contains our custom Linux image and initramfs;

the snippet below shows contents of that file. After this, update GRUB

by running

grub2-mkconfig -o /boot/grub2/grub.cfg

#!/bin/sh

exec tai l -n +3 $0

This f i le provides an easy way to add custom menu entries. Simply

menu entries you want to add after this comment. Be careful not t

the 'exec tai l ' l ine above.

menuentry 'Linux_appliance' {

 l inux ($root)/bzImage root=/dev/ram0 rw

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 16/30

https://dl.acm.org/doi/10.1145/3341301.3359640
https://dl.acm.org/doi/10.1145/3341301.3359640
https://help.ubuntu.com/community/Grub2/CustomMenus
https://docs.fedoraproject.org/en-US/Fedora/24/html/System_Administrators_Guide/sec-Using_only_a_Custom_Menu.html

 initrd ($root)/myinitfs.cpio

}

Contents of custom GRUB entry at /etc/grub.d/40_custom

Notes

I have found differences between Linux flavors with respect to how

the ($root) or /boot variables are used by GRUB to locate the

initramfs and kernel images (details here). As a rough rule of thumb,

I simply take a look at the grub.cfg file under /boot and copy the

examples of how other boot options are defined.

At this point, restart your testing machine, select Linux_appliance as

boot option in the GRUB menu (you may need to manually enable

showing GRUB menu in your Linux install) and the Linux appliance

should then be booted and you will be presented with a simple bash

prompt:

Enable GRUB menu select and you should then see the appliance as a bootable option

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 17/30

https://www.gnu.org/software/grub/manual/grub/grub.html#File-name-syntax

Booted appliance - run reboot -f to restart machine again

Booting using PXE

While booting with GRUB enables a quick way to test the appliance,

the PXE protocol is preferable for setting up experiments as it allows

a single master node to coordinate and boot multiple servers in a

more programmed fashion.

Step 7 (Optional): Getting
an ethernet device
running

In this section, we will demonstrate an example of how chroot can be

used to scope out and get a slightly advanced portion of Linux running.

In this example, we will be enabling the Ethernet device in order to

send DHCP requests for a new IP address; in this case, your machine

should be either hooked up to a local LAN or another machine that is

running a DHCP server.

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 18/30

https://docs.fedoraproject.org/en-US/fedora/rawhide/install-guide/advanced/Network_based_Installations/

find your device

[root@ ~]# lspci | grep Ethernet

00:1f.6 Ethernet control ler : Intel Corporation Ethernet Connection (6

gets its device driver information

[root@ ~]# lspci -s 00:1f.6 -vvv | grep "Kernel driver"

 Kernel driver in use: e1000e

Find out device drivers info

Building device drivers into Linux kernel

The simplest way to automatically enable the Ethernet device in the

appliance is to manually set the module as "Y" after searching for

"e1000e" in the Linux kernel make menuconfigmenu shown in

Step 5. After this, you'll need to run make -j bzImage again to

build the new kernel that now has the e1000e device driver

automatically built in with the kernel image. You can also manually

build the device drivers and use insmod to insert them manually

(details here), though if you are going down this route, use modinfo
to resolve potential kernel module inter-dependencies.

[root@ ~]# chroot $LFS

bash-5.1# ip a

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 19/30

https://www.kernel.org/doc/Documentation/kbuild/modules.txt

1 : lo : <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNK

. . . .

2 : enp0s31f6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

. . . .

. . .

Run dhclient on the interface connected to ethernet, e.g. enp0s3

bash-5.1# dhclient -v enp0s31f6

Can't create /var/run/dhclient.pid: No such fi le or directory

Internet Systems Consortium DHCP Client 4.4.2b1

Copyright 2004-2019 Internet Systems Consortium.

Al l r ights reserved.

For info, please visit https://www.isc.org/software/dhcp/

can't create /var/l ib/dhclient/dhclient. leases: No such fi le or directo

execve (/usr/sbin/dhclient-script, . . .) : No such fi le or directory

.

.

bash-5.1# exit

exit

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 20/30

https://www.isc.org/software/dhcp/

Error messages above indicate we are missing the fol lowing direc

[root@ ~]# mkdir $LFS/var/l ib/dhclient

[root@ ~]# mkdir $LFS/var/run/

[root@ ~]# cp /usr/sbin/dhclient-script $LFS/usr/sbin/

Retry running dhclient

[root@ ~]# chroot $LFS

bash-5.1# dhclient -v enp0s31f6

.

.

/usr/sbin/dhclient-script: l ine 281: ipcalc: command not found

/usr/sbin/dhclient-script: l ine 281: cut: command not found

/usr/sbin/dhclient-script: l ine 878: arping: command not found

/usr/sbin/dhclient-script: l ine 882: arping: command not found

/usr/sbin/dhclient-script: l ine 882: grep: command not found

/usr/sbin/dhclient-script: l ine 882: awk: command not found

/usr/sbin/dhclient-script: l ine 882: cut: command not found

/usr/sbin/dhclient-script: l ine 882: cut: command not found

/usr/sbin/dhclient-script: l ine 883: grep: command not found

/usr/sbin/dhclient-script: l ine 883: awk: command not found

/usr/sbin/dhclient-script: l ine 883: uniq: command not found

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 21/30

/usr/sbin/dhclient-script: l ine 268: ipcalc: command not found

/usr/sbin/dhclient-script: l ine 268: cut: command not found

/usr/sbin/dhclient-script: l ine 268: ipcalc: command not found

/usr/sbin/dhclient-script: l ine 268: cut: command not found

/usr/sbin/dhclient-script: l ine 108: mktemp: command not found

. . . .

Using chroot to get DHCP working

At this point, /usr/sbin/dhclient-script is indicating that the

following programs are missing in the initramfs: ipcalc, cut,
arping, grep, awk, uniq and mktemp. Use the

copy_appliance_libs script above to get those programs running

and rerun dhclient in order to see that the DHCP protocol works and

you should be able to see a new IP address assigned to your Ethernet

interface.

Step 8 (Optional): Example
of scripting experiments
with /init

The /init script can be easily extended for automating experiments, as

an example, the snippets below show a modified

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 22/30

/etc/grub.d/40_custom and /init file that parses the extra GRUB

arguments in order to customize the bash environment upon boot.

#!/usr/bin/sh

exec tai l -n +3 $0

This f i le provides an easy way to add custom menu entries. Simply

menu entries you want to add after this comment. Be careful not t

the 'exec tai l ' l ine above.

menuentry 'Linux_appliance' {

 l inux ($root)/bzImage_5_14_2 root=/dev/ram0 rw appNode=\'node0

 initrd ($root)/myinitfs.cpio

}

Updated /etc/grub.d/40_custom file

#!/bin/bash

export HOME=/root

export LOGNAME=root

export TERM=vt100

export PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin

export ENV="HOME=\$HOME LOGNAME=\$LOGNAME TERM=\$TERM PA

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 23/30

setup standard f i le system view

mount -t proc /proc /proc

mount -t sysfs /sys /sys

mount -t devpts devpts /dev/pts

Some things don't work properly without /etc/mtab.

ln -sf /proc/mounts /etc/mtab

APP PARAMETERS

export APP_MYNODE=' '

cmdline=$(cat /proc/cmdline)

PARSE OUT APP ARGUMENTS

set a unique name for this node so that it can id itself

if [[${cmdline} =~ ^.*appNode=\\\'(. *)\\\' . *$]] ; then

 APP_MYNODE="${BASH_REMATCH[1]}"

 APP_MYNODE=${APP_MYNODE%%\\\'*}

 ## customize node name

 hostname ${APP_MYNODE}

 ## customize bash prompt

 export PS1="${APP_MYNODE}> "

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 24/30

f i

if we get here then we might as well start a shel l :-)

/bin/bash

if bash fai ls, shuts off machine

poweroff -f

Updated /init file

Booted Linux appliance output

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 25/30

Conclusion

This tutorial illustrates the initial steps to creating a stable and clean

working environment for running experiments in Linux. Various pieces

such as using chroot to scope out how to get complicated portions of

Linux running and modifying init to automate experiments only scratch

the surface of how users can customize their own Linux environments.

In addition, there are hardware features and other components of Linux

not covered in this tutorial that a user should account for in order to

minimize overall system noise; examples of these include disabling

hyper-threads, page sizes, pinning threads to cores, and many others.

References:

[1] Petros Koutoupis, DIY: Build a Custom Minimal Linux

Distribution from Source,

https://www.linuxjournal.com/content/diy-build-custom-

minimal-linux-dist..., 7/3/2018

[2] Debian, How initramfs works,

https://wiki.debian.org/initramfs, 5/10/2021

[3] Gentoo Foundation, Inc., Custom Initramfs,

https://wiki.gentoo.org/wiki/Custom_Initramfs, 6/24/2021

[4] Rob Landley, ramfs, rootfs and initramfs,

https://www.kernel.org/doc/Documentation/filesystems/ram

fs-rootfs-initra..., 10/17/2005

[5] Ole Andreas W. Lyngvær, Creating a initramfs image from

scratch, https://lyngvaer.no/log/create-linux-initramfs,

Accessed 10/26/2021

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 26/30

https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://wiki.debian.org/initramfs
https://wiki.gentoo.org/wiki/Custom_Initramfs
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://lyngvaer.no/log/create-linux-initramfs

[6] Werner Almesberger and Hans Lermen, Using the initial RAM

disk (initrd), https://www.kernel.org/doc/html/latest/admin-

guide/initrd.html, 1996, 2000

[7] Gerard Beekmans and Bruce Dubbs, Linux From Scratch,

https://www.linuxfromscratch.org/lfs/view/stable/index.htm

l, Published 9/1/2021

[8] Steve Scargall, How to build an upstream Fedora Kernel from

source, https://stevescargall.com/2020/09/14/how-to-build-

an-upstream-fedora-ker..., 9/14/2020

[9] rs2009, BuildYourOwnKernel,

https://wiki.ubuntu.com/Kernel/BuildYourOwnKernel,

2/3/2021

[10]Shaffer, Michael W. A Linux Appliance Construction Set. 14th

Systems Administration Conference (LISA 2000). 2000.

Article Categories: Operating Systems, Programming, Linux

Last updated February 8, 2023

Authors:

Han Dong is currently pursuing his PhD

at Boston University with a focus on

analyzing performance and energy of

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 27/30

https://www.kernel.org/doc/html/latest/admin-guide/initrd.html
https://www.kernel.org/doc/html/latest/admin-guide/initrd.html
https://www.linuxfromscratch.org/lfs/view/stable/index.html
https://www.linuxfromscratch.org/lfs/view/stable/index.html
https://stevescargall.com/2020/09/14/how-to-build-an-upstream-fedora-kernel-from-source/
https://stevescargall.com/2020/09/14/how-to-build-an-upstream-fedora-kernel-from-source/
https://wiki.ubuntu.com/Kernel/BuildYourOwnKernel

different Operating Systems through

hardware tuning. As a Research Intern

at Red Hat, he is also working on

methods to combine systems level

data analysis with machine learning

techniques towards smarter hardware

policies. In his free time, Han enjoys

building projects with microcontrollers

and reading.

handong@bu.edu

Jonathan Appavoo, PhD is an

Associate Professor at Boston

University in the department of

Computer Science. Prior to that he was

a Research Staff Member at IBM’s T.J.

Watson Research Center in New York.

Professor Appavoo loves to hack on

computers and dream about future

systems and has surprisingly found a

way to make a living at it. As a graduate

student at the University of Toronto

(UofT) he began his PhD working in

Computer Vision hoping to build

robots. He quickly realized the error of

his ways and switched to working on

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 28/30

mailto:handong@bu.edu

the Tornado operating systems – a

novel multiprocessor OS for an

ambitious large scale NUMA

multiprocess being designed and built

at UofT. He followed Tornado’s journey

to IBM and worked on IBM’s K42

Research OS and then the Libra library

OS. After this he helped found Project

Kittyhawk to explore the construction

of a global-scale computer and its

attendant cloud based usage model.

Through these experiences he

nurtured a vision of a novel

Programmable Smart Machine (PSM)

computer model, that combines

biologically inspired mechanisms,

where the system’s performance and

efficiency grow automatically as a

function of its size and usage. He

received an National Science

Foundation CAREER Award to pursue

the PSM model. Professor Appavoo,

along with his graduate students,

continue to hack on OSes and work on

the PSM model. Professor Appavoo

has been very fortunate to have

worked with amazing colleagues and

students and is thankful to all of them

(especially for their patience).

jappavoo@bu.edu

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 29/30

mailto:jappavoo@bu.edu

Log in to post comments

© USENIX 2025

EIN 13-3055038 

Website designed and built

by Giant Rabbit LLC

Powered by Backdrop CMS

Contact USENIX Privacy Policy·

9/27/25, 4:48 PM A Tutorial on Building Custom Linux Appliances | USENIX

https://www.usenix.org/publications/loginonline/building-linux-appliances 30/30

https://www.usenix.org/user/login?destination=comment/reply/277679%23comment-form
https://www.usenix.org/
https://www.usenix.org/
https://www.giantrabbit.com/
https://backdropcms.org/
https://www.usenix.org/contact
https://www.usenix.org/privacy-policy

