

X10-Enabled MapReduce

Han Dong, Shujia Zhou
University of Maryland Baltimore County

han6@umbc.edu

David Grove
IBM

groved@ibm.us.com

Abstract
The MapReduce framework has become a popular and powerful
tool to process large datasets in parallel over a cluster of compu-
ting nodes [1]. Currently, there are many flavors of implementa-
tions of MapReduce, among which the most popular is the
Hadoop implementation in Java [5]. However, these implementa-
tions either rely on third-party file systems for across-computer-
node communication or are difficult to implement with socket
programming or communication libraries such as MPI. To address
these challenges, we investigated utilizing the X10 language to
implement MapReduce and tested it with the word-count use case.
The key performance factor in implementing MapReduce is data
moving across different computer nodes. Since X10 has built-in
functions for across-node communication such as distributed ar-
rays [2], a major challenge with MapReduce implementations is
easily solved. We tested two main implementations: the first uti-
lizes the HashMap data structure and the second a Rail with ele-
ments consisting of a string and integer pair. The performance of
these two implementations are analyzed and discussed.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features – concurrent
programming structures, data types and structures, frameworks.

General Terms Performance, Design, Experimentation, Lan-
guages

Keywords PGAS; MapReduce; across-node-communication

1. Introduction
The MapReduce programming model was introduced by Google
as an efficient way to support distributed computing and
processing large datasets on a large cluster of computing nodes
[1]. The model relies heavily on functional programming func-
tions, map and reduce. The model is mostly embarrassingly paral-
lel since it allows the independent execution of key-value pairs
with the map and reduce functions on each node. Only across-
node communication is needed when congregate and redistribute
intermediate key-value pairs created by map to among nodes for
reduce. A notable MapReduce implementation is done in Hadoop,
with is written in Java. The Hadoop implementation utilizes its
own file system, Hadoop Distributed File System (HDFS) for
storing and sorting data across compute nodes. It consists of a
map function for data distribution and creates key-value pairs, a
combiner function that merges the intermediate maps, then a parti-
tioner that shuffles and sorts the data across different computing
nodes [5]. This design is common among other flavors of MapRe-
duce implementations. However, a key performance factor in this
design is the cost of shuffling data across different nodes and the
reliance on a third party file system to handle data storage. We
chose the X10 language to address these key challenges with the

implementation of MapReduce and demonstrate it with a word-
count use case. The X10 language was chosen since it has benefits
such as easy-across-node communication built into the language,
which will also help to avoid the use of third party file systems so
as to increase portability and provide opportunities for holistic
optimization. In our design, we utilized three different implemen-
tations. The first implementation utilized a HashMap data struc-
ture to store the key-value pairs. In the second implementation, we
built a simple Linked List data structure in X10 and used that for
storing data. Our final implementation utilizes more inbuilt X10
data structures called Rail to store Pair’s that store key, value pairs
in a primitive String, Integer format. In this paper, we will inves-
tigate these three approaches and discuss the pros and cons of
their implementations.

2. Design
The X10 language is the latest addition into the partitioned global
address space (PGAS) model. It further extends PGAS with
Asynchronous PGAS [3]. Key concepts behind the X10 APGAS
model is the advent of places and activities. A place is defined as
a “collection of resident objects and activities”; it can also be
described purely as a computation unit with threads and a local
heap memory. An activity is often described as just a lightweight
thread [2]. The X10 language realizes the APGAS model through
remote references, global address spaces, and inter- and intra-
place operations [4]. The APGAS model allows activities to
access remote objects at other places through functions such as
the at(Place) place shifting operation. However, this only works
through immutable objects/data structures; it is not possible to
access a mutable state in a remote place [4]. In our three imple-
mentations, we intend to minimize the cost of shuffling by taking
advantage of X10’s APGAS model.

In our X10 enabled MapReduce, we introduce three main func-
tions:

1. Map – this handles the parsing and storing of words into
the data structures local to each place.

2. Shuffle/Merge – this handles the distribution of data
from local to remote places.

3. Sort – this handles the final sorting of the data structure
and removes duplicates.

The first implementation utilizes the inbuilt X10 data structure
HashMap as shown in Figure 1. In this implementation, each
place consists of its own HashMap data structure which stores
each word and its occurrence in a String-Integer: key- value pair.
The indexes are hashed with the key. We utilized two methods to
shuffle data: the first method copies and stores data in a single
place; the second method also stores the data in a single place,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2020373.2020382&domain=pdf&date_stamp=2010-10-12

however it utilizes the parallel reduction paradigm [6] to achieve
this. These two methods are possible because of X10’s APGAS
model. The design allows simple copying of data from one place
to another place with methods that are built into the language.
Since HashMap uses a hash function to store the key-value pairs,
it is very difficult to implement a sorting function. In this respect,
the sorting is done through the copying of the data from the final
merged HashMap into an ArrayList, which is then sorted.

Figure 1. The architecture of MapRduce implementation based on
HashMap

The second implementation utilizes a GrowableRail data structure
where each element is a pair of String and LinkedList<Int> (see
Figure 2). The GrowableRail can be transferred into a ValRail,
which is a 1-dimensional sequence of immutable types. The Va-
lRail data structure has built in functions to transfer data from one
place to another. This is an example of the benefit of X10’s li-
brary in across computing node communication compared to other
serial languages such as C and Java. The X10 language uses MPI
or other communication protocols and libraries to do across com-
puting node communication. We wrote a merge sort algorithm to
sort the final result after shuffling.
 The motivation behind using a linked list to keep track of word
occurrences is due to the cost of shuffling. We initially believed
that the X10 libraries for across computing node communication
would include remote memory accesses, thus, reducing redundant
data copying like the previous HashMap example. The key con-
cept here during data shuffling is to copy the head of the linked
list to another computing node, which in turn will enable us to
easily walk through the rest of the data in the linked list without
the need to physically copy the entire structure. However, we
discovered later that trying to take advantage of remote memory
accesses in X10 is not as easy as we expected. The challenges will
be discussed in a later section.

The third implementation utilizes a GrowableRail data struc-
ture where an element is a pair of primitive String and Integer.
This was chosen due to the difficulties of shuffling in the prior
implementation. Since the data structure only contains primitive
values now, the difficulty with using ValRail to transfer data to
different computing nodes is easily solved. A merge sort algo-
rithm is used to sort the final result. In this design, data distribu-

tion to remote places is based on a pre-computed data table. Each
place is allocated a group of alphabets that the starting character
of the word should be copied to. For example, the key-value pairs
with the starting characters of the word from A to G are copied to
Place 0, H to K are copied to Place 1, etc. The load balancing is
not optimal since it is not done dynamically in this implementa-
tion. We plan to develop a dynamic load balance scheme which
will collect the distribution of key-value pairs during the map
operation, analyze communication cost among compute nodes,
and optimally dispatch the key-value pairs to the destined com-
pute nodes.

Figure 2. The architecture of MapReduce implementation based
on Linked List or Primitive String, Integer.

3. Implementation
In all three implementations, a data structure is allocated to each
place with the following function:

val n = PlaceLocalHandle.make[DataStructure]
(Dist.makeUnique(), ()=>new DataStructure());

In the X10 MapReduce implementation, the key performance
factor is the time spent in shuffling data across different compu-
ting nodes. Specifically in the HashMap implementation, there are
two merging functions: the single place merge (Figure 3) and the
parallel reduction merge (Figure 4).

Figure 3. Illustration of single place merge function.

Figure 4. Illustration of parallel reduction merge function.

The single place merge is a simple serial merging function where
the data of each HashMap is copied into a single designated place.

3.1 Example of single place merge where data from places 1 to n
is copied to the HashMap data structure at place 0:

for((i) in 1..numPlaces)
{
 async(Place.places(i))
 {
 for(e in hmaps().entries())
 {
 async(Place.place(0))
 {
 hmaps().insert(key, value);
 }
 }
 }
}

The parallel reduction merge is a recursive function that merges
data structures in parallel with each activity spawned handling the
merging of two different places. The motivation behind this im-
plementation is that this sorting is naturally parallel and would
perform better than the serial single place merge.

3.2 Example of parallel reduction merge where data structures
from different places are merged in parallel.

val c = nPlaces/2;

for((i) in (c..nPlaces)
{
 async(Place.places(i))
 {
 val j = here.id – c;
 for(e in hmaps().entries())
 {
 async(Place.places(j))
 {
 hmaps().insert(key, value);
 }
 }
 }
}

parallelMerge(hmaps,(nPlaces/2));

The second implementation utilizes a GrowableRail data struc-
ture, which has simple built in functions for data transfer across
remote places.

3.3 Example of ValRail copyTo function.

for(….)
{
 at(Place.places(..))
 {
 val r = n().gRail.toValRail();
 at(Place.places(..))
 {
 r.copyTo(src,n().rail,rail,num);
 }
 }
}

The copyTo function requires the specific boundary of the data
structure to copy to. This can be rather complicated if the load
balancing of the data distribution was dynamically computed.
However, we pre-computed the boundary data, thus making the
coding less complex.

The third implementation is very similar to the linked list imple-
mentation. The GrowableRail utilizes a pair of String, Integer for
each element instead of a pair of String, LinkedList<Int>. The
shuffling of data in this implementation is the same as the exam-
ple code shown in 3.3.

4. Results
To measure the performance of the X10 MapReduce implementa-
tions, we tested them on one cluster of four blades in the IBM
Watson Lab which is running X10-2.0.4. Each blade has two
Quadcore AMD processors (that is, 8 cores in a blade.). Four
nodes are connected over a 10Gb Ethernet in the same blade cen-
ter, so they are on the same internal Ethernet switch and should
have fairly good connectivity. We utilized two test files: one was
4 MB (bible) [7] while the other was 50 MB (WordNet) [8]. The
word distributions in the two files were statistically uniform since
they were intended to be commercially used. We ran the tests
using 1 place, 2 places, 4 places, and 8 places, respectively for
scalability up to 8 cores. In all three following implementations
we used the –O and –NO_CHECKS compiler flags to compile the
codes.

We ran the initial test on one blade for the baseline case (Figure
5). Although this was run on only one blade, we can already see
that the performance of the parallel reduction merge is worse than
that of the others. We do not expect it to improve since the com-
munication cost is greater when more nodes (places) are used due
to the transportation of data through sockets.

Figure 5. The performance of X10-enabled MapReduce on one
node.

The results of processing a 4 MB file on four blades are shown

in Figure 6. It can be seen that both the primitive and single place
implementations are scalable to eight places. This could be the
benefit of using X10’s APGAS model to transport data across
remote places. A subsequent graph of the shuffling time is shown
in Figure 7.

Figure 6. The performance of X10-enabled MapReduce on 4
nodes with a 4 MB test file.

However, for the parallel reduction case, the performance could
be explained by the fact that it is a recursive function, which is
already naturally slow.

Figure 7. The performance of shuffle with 4MB test file.

As the graph in Figure 7 indicates, the shuffling time for the paral-
lel reduction is the longest out of all three implementations while
the primitive implementation performed the best. We can also
observe that the cost of shuffling is a major factor in the overall
performance of an X10- enabled MapReduce. The primitive im-
plementation with the best scalability is also an indication that it
had the best performance in terms of data transportation.
 Our next tests were to process a 50 MB file. The results of both
the overall time and the shuffling time can be seen in Figures 8
and 9, respectively.

Figure 8. The performance of X10-enabled MapReduce on 4
nodes with a 50 MB test file.

Based on the results, we can see that the primitive implementation
actually performed the worst. With a larger file, the HashMap
single place merge implementation was still scalable to eight
places.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 4 8

To
ta

l T
im

e
(m

s)

Places

Baseline Performance(4 MB)

primitive

Single Place

Parallel
Reduction

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2 4 8

To
ta

l T
im

e
(m

s)

Places

Performance of 4 MB File

primitive

Single Place

Parallel
Reduction

0
500

1000
1500
2000
2500
3000
3500

1 2 4 8

To
ta

l T
im

e
(m

s)

Places

Performance of Shuffle (4 MB)

primitive

Single Place

Parallel
Reduction

0
50000

100000
150000
200000
250000
300000
350000
400000

1 2 4 8

To
ta

l T
im

e
(m

s)

Places

Performance of 50 MB File

primitive

Single Place

Parallel
Reduction

Figure 9. The performance of shuffle with 50 MB test file.

Based on the results in Figure 9, the shuffle operation can be seen
to take up the bulk of the processing time. In our analysis, the
copying of data by utilizing the at(Place) place shifting operator
seems to perform better than the ValRail.copyTo operator. This is
primarily because we were not able to access a mutable object
from a remote place. In order to utilize the copyTo function, we
had to convert the GrowableRail into a ValRail and preprocess the
borders of the ValRail to specify the ranges to be copied; this
resulted in very complex code, redundant data copying and also a
waste of memory (Example 3.3). Whereas the HashMap imple-
mentation had no redundant data copying, each data was ap-
pended to a pre-existing HashMap (Example 3.1).
 We were not able to successfully test the linked list implemen-
tation since it was not possible to pass the head node of the list
into another place then walk through the rest of the nodes in the
list; in other words, it was not possible to do remote memory ac-
cesses unless the physical data was copied. This meant that in
order to have a working linked list implementation, it was re-
quired to have each node in the linked list to be copied over along
with the head node. This implementation not only introduces re-
dundant data copying, but its implementation would be similar to
HashMap.

Figure 10. Performance of Map operation between Hadoop and
X10 implementation.

We were also able to run some tests on a cluster of blades run-
ning Hadoop 0.20.0 to test X10’s performance against it. The
Hadoop tests were run on a cluster of IBM PowerPC blades con-
nected over a 1Gb Ethernet, each blade with a Dualcore 2.2 Ghz

processor chip. We were mainly concerned with the performance
of the Map and Reduce tasks. To do a fair comparison between
the two implementations, we mapped the number of tasks utilized
in the hadoop-example.jar wordcount implementation against the
number of Places used in X10. We compared the performance of
the Map tasks in Hadoop against the Map tasks in X10. In addi-
tion, we compared the Reduce tasks in Hadoop against the Shuffle
and Sort tasks in X10. The results of the tests are shown in Figure
10 and Figure 11. Based on the results, we can see that X10’s
performance can be comparable to Hadoop’s.

Figure 11. Performance of Reduce operation between Hadoop
and X10 implementation.

However, there are a few key points that should be pointed out
in terms of the performance. Firstly, Hadoop’s HDFS greatly
reduces the processing time for large input files. Secondly, Ha-
doop is designed to be scalable to many clusters of computing
nodes while maintaining the same performance level on each
node. Thirdly, the cluster of computing nodes for running Hadoop
only had 1 Gb Ethernet connections while the IBM compute
nodes had 10 Gb Ethernet connections, this would mean that the
Hadoop Reduce tasks were at a disadvantage compared to the X10
Shuffle operations. Our tests with X10 indicate that the perfor-
mance of Shuffle and Sort degrades after 8 Places, this can be
attributed to shuffling of data among different Places. However,
adaptive load distribution seems to alleviate this degradation[9].
The performance of the MapReduce implementation in X10
shows that X10 has potential to support future data intense appli-
cations on big clusters especially since performance of the key
Map and Reduce functions in X10 are comparable to that of Ha-
doop.

5. Summary
We have investigated the X10 implementation of MapReduce
with three different methods and indentified both the benefits and
difficulty of using X10 to implement data shuffling. While the
X10 libraries provide very robust functions for easy transportation
of data, the lack of remote memory accesses makes the shuffling
of data across places time-consuming. Although the APGAS
model provides a very powerful way to do across node compu-
ting, it could provide better features such as the ability to build a
mutable data structure in one place and transport its contents to a
data structure in another place.

0

100000

200000

300000

400000

1 2 4 8

To
ta

l T
im

e
(m

s)

Places

Performance of Shuffle (50 MB)

primitive

single place

parallel
reduction

6. Copyright Notice
Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. PGAS’10 New York, New York USA.
Copyright 2010 ACM 978-1-4503-0461-0/10/10. . . $10.00.

Acknowledgments

This project is partially supported with the IBM X10 2009 Award.
We would like to thank Yelena Yesha and Milton Halem for
helpful discussions.

References
 [1] Dean J, Ghemawat S. MapReduce: Simplified Data Processing on

Large Clusters. OSDI'04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA, December, 2004.

[2] Saraswat V, Bloom B. Report on the Programming Language X10
Version 2.0.4. June 10, 2010
<http://dist.codehaus.org/x10/documentation/languagespec/x10-
latest.pdf>

[3] Ebcioglu K, Saraswat V, Sarkar V. X10: an Experimental Language
for High Productivity Programming of Scalable Systems. P-PHEC
workshop, HPCA 2005.

[4] Charles P, Donawa C, Ebcioglu K, Grothoff C, Kielstra A, v. Praun
C, Saraswat V, Sarkar V. X10: An Object-Oriented Approach to
Non-Uniform Cluster Comptuting. OOPSLA 2005

[5] Hadoop MapReduce. <http://hadoop.apache.org/mapreduce/>
[6] Harris M. Optimizing Parallel Reduction in Cuda.

<http://developer.download.nvidia.com/compute/cuda/1_1/Website/p
rojects/reduction/doc/reduction.pdf>

[7] Williams F. Smyth. July 14, 2010.
<http://www.cas.mcmaster.ca/~bill/strings/english/bible>

[8] Miller, George A. "WordNet - About Us." WordNet. Princeton Uni-
versity. 2009. http://wordnet.princeton.edu

[9] Shujia Zhou and Congchong Liu, Private Communication

